

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names
may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2019–2020 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

VK_QCOM_render_pass_transform Extension

Developer Guide

80-PT676-1 Rev. B

May 29, 2020

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

Revision history

Revision Date Description

A November 2019 Initial release

B May 2020 Updated 4.1 “How to use the extension”

Updated A “Extension definition”

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

Contents

1 Introduction ... 4

1.1 Purpose ... 4

1.2 Conventions .. 4

1.3 Technical assistance ... 4

2 Extension overview .. 5

2.1 Pre-rotation .. 5

2.2 Implementation of the extension ... 5

2.3 Proposal .. 6

3 Extension specifications ... 7

4 Extension usage ... 8

4.1 How to use the extension ... 8

4.2 Validity check .. 8

4.3 Simple test .. 9

A Extension definition ... 10

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

1 Introduction

1.1 Purpose
This document describes a new vendor extension from Qualcomm® that reduces the burden on
the application in handling pre-rotation in Vulkan. A general technical overview is also provided
for better understanding. In the end, the extension specification is listed, and its usage illustrated.

1.2 Conventions
Function declarations, function names, type declarations, attributes, and code samples appear in
a different font, for example, #include.

Code variables appear in angle brackets, for example, <number>.

Commands to be entered appear in a different font, for example, copy a:*.* b:.

Button and key names appear in bold font, for example, click Save or press Enter.

1.3 Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.Qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send email to
support.cdmatech@qti.Qualcomm.com.

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

2 Extension overview

When doing pre-rotation, the extension VK_QCOM_render_pass_transform frees the

applications from some of the burden required.

A general information and background of is described, along with the changes provided by the
implementation of the extension.

2.1 Pre-rotation
Mobile devices can be rotated, and mobile applications need to render properly when a device is
held in a landscape or portrait orientation. When the current (landscape) orientation differs from
the device’s native (portrait) orientation, a rotation is required so that the "up" direction of the
rendered scene matches the current orientation.

The rotation can be handled differently. The Vulkan presentation engine can handle this rotation
in a separate composition pass. Alternatively, the application can render frames "pre-rotated" to
avoid this extra pass. The latter is preferred to reduce power consumption and achieve the best
performance because it avoids tasking the GPU with extra work to perform the copy/rotate
operation.

Unlike OpenGL ES, which entails the burden on the driver, the pre-rotation burden in Vulkan falls
on the application. To implement pre-rotation, the application renders into swapchain images
matching the device’s native aspect ratio of the display and then "pre-rotates" the rendering
content to match the device’s current orientation.

However, this pre-rotation burden is greater than adjusting the Model View Projection (MVP)
matrix in the vertex shader to account for rotation and aspect ratio. The coordinate systems of
scissors, viewports, derivatives and several shader built-ins may need to be adapted to produce
the correct result. It is difficult for some game engines to manage this burden; many choose to
simply accept the performance/power overhead of performing rotation in the presentation engine.

2.2 Implementation of the extension
This extension allows applications to achieve the performance benefits of pre-rotated rendering
by moving much of the above-mentioned burden to the graphics driver.

The following is unchanged:

■ Applications create a swapchain matching the native orientation of the display. Applications
must also set the VkSwapchainCreateInfoKHR::preTransform equal to the

currentTransform as returned by vkGetPhysicalDeviceSurfaceCapabilitiesKHR.

The following are changes with this extension:

■ At vkCmdBeginRenderpass, the application provides extension struct

VkRenderPassTransformBeginInfoQCOM specifying the render pass transform

parameters.

VK_QCOM_render_pass_transform Extension Developer Guide Extension overview

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

■ At vkBeginCommandBuffer for secondary command buffers, the application provides

extension struct VkCommandBufferInheritanceRenderPassTransformInfoQCOM

specifying the render pass transform parameters.

■ The renderArea, viewPorts and scissors are all provided in the current (non-rotated)
coordinate system. The implementation will transform those into the native (rotated)
coordinate system.

■ The implementation is responsible for transforming shader built-ins (FragCoord,

PointCoord, SamplePosition, interpolateAt(), dFdx, dFdy, fWidth) into the

rotated coordinate system.

■ The implementation is responsible for transforming the position to the rotated coordinate
system.

2.3 Proposal
Rather than modifying their shader pipelines or vertex data, applications can leverage this
extension from Qualcomm.

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

3 Extension specifications

Name
String

VK_QCOM_render_pass_transform

Extension
Type

Device extension

New Enum
Constants

▪ Extending VkStructureType:

VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM

VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM

▪ Extending VkRenderPassCreateFlagBits:

VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM

New
Structures

VkRenderPassTransformBeginInfoQCOM

VkCommandBufferInheritanceRenderPassTransformInfoQCOM

New
Functions

None

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkStructureType

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

4 Extension usage

4.1 How to use the extension
Follow these steps to use the extension:

1. Enable “VK_QCOM_RENDER_PASS_TRANSFORM_EXTENSION_NAME” extension when
creating device (vkCreateDevice).

2. Create rotated swapchain if currentTransform as returned by

vkGetPhysicalDeviceSurfaceCapabilitiesKHR is 90 or 270.

3. Swap width and height.

4. Set VkSwapchainCreateInfoKHR::preTransform equal to the currentTransform.

5. Set VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM flags when creating the render pass.

6. Create Framebuffer with the swapped width and height.

7. Provide the render pass transform info to driver at record time.

■ Via VkRenderPassTransformBeginInfoQCOM in the call to vkCmdBeginRenderPass for

primaries and secondaries outside a render pass.

■ Via VkCommandBufferInheritanceRenderPassTransformInfoQCOM for secondary

command buffers entirely in a Render Pass (e.g.
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is set)

■ The transform in VkRenderPassTransformBeginInfoQCOM and

VkCommandBufferInheritanceRenderPassTransformInfoQCOM must be consistent with

the preTransform specified on creating the swapchain.

4.2 Validity check
To ensure valid usage of the extension, ensure the following:

■ RenderPass’s renderArea must be equal to the unrotated Framebuffer dimensions with
renderArea::offset equal to (0,0)

Notes

■ The driver will rotate state as needed during a render pass. The application will need to
handle rotation outside of a render pass (e.g., image clears, copies, blits, compute, etc.).

■ If the rotation angle changes, all command buffers (primary & secondary) will need to be re-
recorded.

■ The transform will be applied to the back framebuffer’s color and depth attachments used in
the render pass. For example, a depth buffer used with the on-screen color buffer (“swap
image”) will need to have matching extents.

VK_QCOM_render_pass_transform Extension Developer Guide Extension usage

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

4.3 Simple test
■ Tested a simple native application on the SDM730 device with GPU frequency fixed to 355

MHz. A performance improvement of 6.6% was achieved.

 GPU FPS GPU time GPU composition

Enable
VK_QCOM_render_pass_transform

59.8 16.7ms /

Disable
VK_QCOM_render_pass_transform

56.3 17.8ms 2.2ms

80-PT676-1 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

A Extension definition

■ The extension was published on 2020-02-05, developers can search and get the definitions
on khronos vkspec from https://www.khronos.org/registry/vulkan/specs/1.0-
extensions/html/vkspec.html.

■ To cover all the QCOM devices in the market, it is recommended to use
VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM = 1000282000

when driverVersion <=#468, and use
VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM = 1000282001

when driverVersion >=#469”

#define VK_QCOM_render_pass_transform 1

#define VK_QCOM_RENDER_PASS_TRANSFORM_SPEC_VERSION 1

#define VK_QCOM_RENDER_PASS_TRANSFORM_EXTENSION_NAME "VK_QCOM_render_pass_transform"

#define VK_STRUCTURE_TYPE_RENDER_PASS_TRANSFORM_BEGIN_INFO_QCOM 1000282000

#define VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDER_PASS_TRANSFORM_INFO_QCOM 1000282001

#define VK_RENDER_PASS_CREATE_TRANSFORM_BIT_QCOM 0x00000002

typedef struct VkRenderPassTransformBeginInfoQCOM {

 VkStructureType sType;

 void* pNext;

 VkSurfaceTransformFlagBitsKHR transform;

} VkRenderPassTransformBeginInfoQCOM;

typedef struct VkCommandBufferInheritanceRenderPassTransformInfoQCOM {

 VkStructureType sType;

 void* pNext;

 VkSurfaceTransformFlagBitsKHR transform;

 VkRect2D renderArea;

} VkCommandBufferInheritanceRenderPassTransformInfoQCOM;

https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html

