

Qualcomm Technologies, Inc.

Qualcomm Snapdragon and Qualcomm Snapdragon Flight are products of Qualcomm Technologies, Inc. Other Qualcomm products
referenced herein are products of Qualcomm Technologies, Inc. or its other subsidiaries.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Snapdragon
Flight is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their
respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2018 Qualcomm Technologies, Inc. All rights reserved.

Machine Vision

Quick Start Guide

80-H9220-3 Rev. A

January 15, 2018

80-H9220-3 Rev. A Confidential and Proprietary – Qualcomm Technologies, Inc. 2

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

1 Introduction

The Machine Vision (MV) SDK is a C/C++ programming API comprised of a library, header files, and

applications.

1.1 Board Setup
For Snapdragon Flight boards with an OS version of 3.1.3.1 or earlier, the ownership of the home

directory needs to be fixed after first flashing the board.

cd /home

sudo chown linaro linaro

sudo chgrp linaro linaro

After the first successful X window opens after flashing, the authority file should be copied.

cp /home/linaro/.Xauthority /root

1.2 Workstation Setup
Some of the MV applications have the ability to open an X11 window for viewing. Linux workstations

have the native ability to display these windows but Microsoft Windows needs a program like Xming

installed first.

On Windows machines, the application PuTTY is commonly used for serial line connections. PuTTY can

also be used for connecting to board via SSH for X windows forwarding by setting the option.

Session > Connection type

Connection > SSH > X11 > Enable X11 forwarding

1.3 Installation
To install MV one needs to obtain both a valid license file (snapdragon-flight-license.bin) and the

MV Debian package (mv_1.1.7_8x74.deb). After that, two more steps are needed.

• Copy package from a local computer to the board.
scp tmp/mv_1.1.7_8x74.deb linaro@<BOARD_IP_ADDRESS>:/home/linaro/mv.deb

scp snapdragon-flight-license.bin \

linaro@<BOARD_IP_ADDRESS>:/home/linaro/snapdragon-flight-license.bin

• Install the license to where the library will be installed or add to LD_LIBRARY_PATH.
mv snapdragon-flight-license.bin /usr/lib

• Install the package on the board.
sudo dpkg -i mv.deb

The installation puts:

• The applications into /usr/bin;

• The library files into /usr/lib;

Machine Vision Quick Start Guide Introduction

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

• The header files into /usr/include/mv; and

• The application source code into /usr/share/mv.

1.4 Initialization After Boot
Some of the applications require access to the IMU regardless of whether or not the data is used.

Therefore, it is important to start the imu_app after each boot if you have not already added it to your

startup script. The application can be started from the command line with the following two commands:

sudo su

imu_app &

Machine Vision Quick Start Guide Applications

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

2 Applications

The applications are a good way to get going with MV. Although it will not be shown throughout the

examples, because of the permission scheme currently deployed on the board, one typically needs to

prepend each command line with sudo. For example, running mvCameraView with a number one

afterwards would really look as follows:

sudo mvCameraView 1

These examples will also assume that one connects to the board via SSH with X forwarding enabled as

previously described.

The applications are divided into two categories for easier understanding: online and offline (i.e.,

playback). The applications are listed herein in sort of the natural order a person would use them.

Therefore, the online applications are a good place to start.

2.1 Online Applications
The online applications run real-time on target to demonstrate the various technologies using the onboard

sensors. There are also some extra applications beyond demonstrating technologies to help a developer

get going.

mvCameraView
Since most of the SDK relies on camera data, testing the cameras out is a natural place to start. The

camera view application also does not rely on the MV library so it may also be useful in debugging

platform problems. The camera view application is very simple to run for the downward-facing tracking

camera.

mvCameraView 1

As listed by the help option, one can try each different camera out and multiple cameras in parallel.

A real-time window should open showing the camera view. Although the camera frames are requested at

a 30 FPS rate. they actual achieved rate is shown by the FPS value in the window. Because piping the X

window over SSH is very processing and bandwidth intensive, the displayed frame rate is much lower.

Hence, the viewed update rate may look choppy.

Because the application does not use the MV library, it implements a very rudimentary exposure control

for the cameras (tracking and stereo) that do not have automatic gain and exposure control built in.

mvCPA
The CPA feature is the way MV applications typically implement automatic gain and exposure control.

This application demonstrates the CPA performance in a way very similar to mvCameraView. Running it

looks very much the same too except for the added specification of the algorithm choice.

mvCPA 1 1

Machine Vision Quick Start Guide Applications

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

The window also displays an estimate of the textured quality of the image scene. This is to give one an

idea of which scenes are good for tracking and which are not. This knowledge is useful later on when

doing sequence captures for calibration.

mvCapture
The capture application is one way to capture sensor data sequences that can later be used in playback

applications or offline development and debugging. The application currently only supports capturing

one camera at a time. To capture a sequence of data from the tracking camera, run it for a certain period

of time and then control-C out.

mvCapture -o -t -d record_tracking

This sequence can then be used directly with a playback application (e.g., mvVISLAMPlayback) or copied

off the board as support data to help identify a problem. Timed captures are easy by prepending a timeout

command.

timeout -s SIGINT 30s mvCapture -o -t -d record_tracking

What this application is used for most is to calibrate the cameras offline via the CAC and SAC playback

applications. That calibration procedure is covered in a separate section to make the steps easier to read.

mvVISLAM
NOTE: Good performance requires that camera calibration be done first for the tracking camera and the

source code be modified to include that calibration and recompiled.

The VISLAM application is very easy to run with the default calibration since it needs no parameters and

will usually work with the default calibration.

mvVISLAM

The only display is the 6-DOF poses writing out to the terminal. The location will be all zero values until

VISLAM initializes. To help it initialize, one needs to move and rotate the board around some while the

tracking camera sees enough texture to track with (i.e., not pointing at an all-white desk).

mvDFS
NOTE: Good performance requires that stereo camera and stereo rig calibration be done first. After that

the source code can be modified to include those calibrations and recompiled or there is an option to read

the calibrations from a file.

The application is typically run with many options specified.

mvDFS -m 1 -j 0 -i 0 -a -F 4 -p 0

Since this application was intended only for development and is very rudimentary, it is better to study the

source code before attempting to use it. Therefore, running it will not be described further herein.

2.2 Playback Applications
The playback applications are examples of how to exercise the various technologies using offline data.

That offline data is an SRW sequence and is typically captured by mvCapture, SNAV, or a developer’s

own application using the SRW API. Most of the playback applications take in a path to sequence data as

either the first argument or via the -s option.

Machine Vision Quick Start Guide Applications

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

mvCACPlayback

The application is designed to run from an offline SRW sequence of data.

mvCACPlayback -b eagle -s 100 <PATH>/seq1

Ignore any AR ERROR messages. The output should end something like:

Reprojection error=1.024093

Inlier ratio=0.977944

DG.input-size=640x480

DG.K=276.807434,0,321.829407,0,276.807434,248.027313,0,0,1

DG.distortion=-0.002200,0.006687,-

0.002951,0.000253,0.000000,0.000000,0.000000,0

.000000

DG.distortion-model=10

DG.RBC=-0.001901,-0.189321,0.981914,-0.999962,0.008671,-0.000264,-

0.008464,-0.98

1877,-0.189330

DG.timing-offset-in-ms=-7.678854

Rolling shutter skew=0.000000ms

The resulting calibration file is added directly to the sequence directory.

mvDFSPlayback
NOTE: Good performance requires that stereo camera and stereo rig calibration be done first. After that

the source code can be modified to include those calibrations and recompiled or there is an option to read

the calibrations from a file.

The application is designed to run from an offline SRW sequence of data.

mvDFSPlayback -m 11 -d 0 -D 32 -s <PATH>/seq1 -c <PATH>/seq1/sac.xml

The output images should be in a local sub directory (tmp/) unless specified using -o option.

mvDFTPlayback

The application is designed to run from built-in data and the calibration values built into the source code

match that data.

mvDFTPlayback

The end of the output should look something close to the following:

DFT failed. Iteration: 0

DFT Worked. Movement: x: 3.32349 y: 0.0497742

Test complete

mvSACPlayback

The application is designed to run from an offline SRW sequence of data:

mvSACPlayback -s 100 -e 200 <PATH>/seq1

The output should end something like:

Performing calibration ...

Reprojection error=0.924225

Inlier ratio=0.909164

Stereo calibration:

Machine Vision Quick Start Guide Applications

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

rRL=0.035636 0.016273 -0.005733

tRL=-0.080000 0.000000 0.000000

mvVISLAMPlayback
NOTE: Good performance requires that camera calibration be done first for the tracking camera and the

source code be modified to include that calibration and recompiled.

The application is designed to run from an offline SRW sequence of data.

mvVISLAMPlayback <PATH>/seq1

The output should end with something like:

No more frames

AR INFO:

FIT:FeatureName=>SensorFusion, TSBDrift=>0.01366 (0.001)

FIT:FeatureName=>SensorFusion, TSBDrift0=>0.002 (0.000)

FIT:FeatureName=>SensorFusion, TSBDrift1=>0.003 (0.000)

FIT:FeatureName=>SensorFusion, TSBDrift2=>-0.013 (0.000)

FIT:FeatureName=>SensorFusion, RSBDrift=>0.11181

FIT:FeatureName=>SensorFusion, AccelBias0=>0.25693

FIT:FeatureName=>SensorFusion, AccelBias1=>-0.33832

FIT:FeatureName=>SensorFusion, AccelBias2=>-0.04446

FIT:FeatureName=>SensorFusion, GyroBias0=>-0.00643

FIT:FeatureName=>SensorFusion, GyroBias1=>-0.00062

FIT:FeatureName=>SensorFusion, GyroBias2=>-0.00355

FIT:FeatureName=>SensorFusion, GravityBias0=>-2.34048

FIT:FeatureName=>SensorFusion, GravityBias1=>1.08543

FIT:FeatureName=>SensorFusion, GravityBias2=>9.44810

FIT:FeatureName=>SensorFusion, FrameCount=>256

FIT:FeatureName=>SensorFusion, ImuCount=>8270

FIT:FeatureName=>SensorFusion, AvgTimeFrameUpdate=>4.05ms

FIT:FeatureName=>SensorFusion, NumResets=>3

AR INFO:

TrckLnDst:392 117 71 77 49 40 43 31 31 32 29 21 25 24 24 13 13 14 11 9 11 6

5 6 3 3 6 2 2 3 4 5 8 3 5 0 6 5 3 2 2 1 0 0 0 2 2 2 1 2 2 1 0 1 2 1 1 2 0 1

1 3 1 2 3 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 0 2 1 1 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0

AR INFO:

Distribution of num of consec keyframes w/ GN failing all features:83 0 0 0

0

AR INFO:

Distribution of num of consec frames w/ increasing depth uncertainty:245 0

0

Machine Vision Quick Start Guide Applications

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

mempool num blocks 4

Frames read: 256

Playback finished

mvSRWPlayback

The application is designed to create a small offline SRW sequence of data in the directory specified by

the sole argument.

mvSRWPlayback srw

The output images should be in a local subdirectory (srw/). The images inside the srw/camera0/

directory should look like:

There may be several error messages along the way. The end of the output should look something close

to the following:

nCameras=1

cameraName=camera0 cameraType=mono

CameraParameters

pxlWidth=320 pxlHeight=240 memStride=320 uvOffset=0

principalPoint = (10.000000, 11.000000)

focalLength = (1.100000, 1.200000)

distortionModel=10 distortion=[2.100000, 2.200000, 2.300000, 2.400000,

2.500000, 2.600000, 2.700000, 2.800000]

Pau hanna...

mvVMPlayback

The application is designed to run from an offline sequence of depth data.

mvVMPlayback -s <PATH>/seq1

The output should end with something like:

Collision for box -0.0945612 -0.099557 -0.0970303 - 0.105439 0.100443

0.102970 at 1.96182e-44 1.96182e-44 1.96182e-44

Collision for box -0.0945612 -0.099557 -0.0970303 - 0.105439 0.100443

0.102970 at 1.96182e-44 1.96182e-44 1.96182e-44

Collision for box -0.0940224 -0.0991988 -0.0962258 - 0.105978 0.100801

0.1037740 at 1.96182e-44 1.96182e-44 1.96182e-44

Machine Vision Quick Start Guide Calibration

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

3 Calibration

Although designed to demonstrate MV that would be integrated into a system, the applications can be

used to calibrate the cameras and stereo rig as well.

3.1 Good Location
While the calibration does not need a known target such as a checkerboard, it does need a stationary scene

with good texture and lighting condition. Far-away landscape in daylight works best, such as the example

below.

Indoor scene such as below works too, but requires more care to get good results. Make sure the scene

has enough depth (> 3 m), texture, and good lighting condition.

NOTE: Please inspect the input frames and make sure there's no visible motion blur. Otherwise the

calibration result is unreliable. The calibration algorithm tolerates noisy or dark images, much better than

blurry images.

Machine Vision Quick Start Guide Calibration

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

3.2 Tracking Camera

Capture Data
Rotate the camera around all 3 axes, while minimizing translation (sideways motion).

Run the following commands:

rm -rf record_track

timeout -s SIGINT 30s mvCapture -o -t -d record_track

Calibrate Camera Intrinsic Parameters
Run the following command:

mvCACPlayback -b eagle -s 100 record_track -o track_undistorted.avi

If the calibration is successful, the output will look like below:

Tracking state = 0

Reprojection error=0.855193

Inlier ratio=0.989893

Distortion model error=0.588824

DG.input-size=640x480

DG.K=432.916797,0,331.528716,0,432.916797,226.316235,0,0,1

DG.distortion=0.018457,-0.032563,0.000050,-

0.000066,0.000000,0.000000,0.000000,0.000000

DG.distortion-model=10

DG.RBC=0.017096,-0.218179,0.975759,-0.999854,-0.004407,0.016533,0.000693,-

0.975899,-0.218222

DG.timing-offset-in-ms=-8.629679

It will also output a video file (track_undistorted.avi). It is always a good idea to make sure the

undistorted video looks reasonable.

The output distortion model can be specified by -m flag. The default model is the fisheye model (model

10). Change to model 4, 5, or 8 for 4, 5, or 8 parameter polynomial models. The calibration uses fisheye

model internally and converts to polynomial models at the end. Distortion model error measures the

conversion error. A warning message is generated if the error is large. In that case please consider using

higher order model or fisheye model to reduce the conversion error.

NOTE: The polynomial models always have zeros in the tangential distortion parameters (third and

fourth parameter), because fisheye model is radial distortion only.

It will also generate a file at record_track/cacLeft.cal, which contains pretty much the same

information:

<?xml version='1.0' encoding='UTF-8'?>

<Camera>

<Parameters>

<Intrinsics size="640 480" pp="331.528716 226.316235" fl =

"432.916797 432.916797" distModel = "10" dist = "0.018457 -0.032563

0.000050 -0.000066 0.000000 0.000000 0.000000 0.000000"/>

</Parameters>

</Camera>

NOTE: The distortion model used in *.cal file is always fisheye model, regardless the -m flag value.

Machine Vision Quick Start Guide Calibration

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

NOTE: The example above is to show the format of the output. The calibration parameter values in the

example may not reflect the true values.

Store Calibration
Because the calibration is particular to the board and not any specific data sequence, it is common to

move the final calibration files to a well-known location (e.g., /usr/share/mv/cal/) to be used by all

applications.

Quick Tip for Troubleshooting
mvCACPlayback takes a considerable amount of time to finish, and it is very time consuming to debug by

looking at the final result. You can use the -v flag to display frame-by-frame information as shown

below:

Processed frame 100

TS(-1); RE(inf); IR(0.00); PP(0.50,0.50); FR(0.60,0.60); D(0.00,0.00);

tGC(0.0); tRSS(0.0);

Processed frame 101

TS(-1); RE(1.02); IR(0.97); PP(0.33,0.50); FR(0.26,0.26); D(-0.14,0.28);

tGC(9.6); tRSS(0.3);

Processed frame 102

TS(-1); RE(0.82); IR(0.98); PP(0.50,0.45); FR(0.31,0.31); D(-0.14,0.34);

tGC(9.0); tRSS(0.7);

Processed frame 103

TS(-1); RE(0.71); IR(0.99); PP(0.50,0.50); FR(0.31,0.31); D(-0.05,0.08);

tGC(8.1); tRSS(1.2);

Processed frame 104

TS(-1); RE(0.66); IR(0.99); PP(0.49,0.50); FR(0.31,0.31); D(0.01,-0.02);

tGC(8.4); tRSS(1.2);

Processed frame 105

TS(-1); RE(0.63); IR(0.99); PP(0.49,0.50); FR(0.31,0.31); D(-0.03,0.02);

tGC(8.4); tRSS(1.2);

Processed frame 106

TS(1); RE(0.69); IR(0.99); PP(0.49,0.48); FR(0.31,0.31); D(-0.02,0.02);

tGC(9.2); tRSS(1.0);

Processed frame 107

TS(1); RE(0.76); IR(0.99); PP(0.49,0.49); FR(0.30,0.30); D(-0.00,0.00);

tGC(9.2); tRSS(0.9);

Processed frame 108

TS(1); RE(0.77); IR(0.99); PP(0.49,0.52); FR(0.31,0.31); D(-0.06,0.04);

tGC(8.5); tRSS(1.1);

Processed frame 109

TS(1); RE(1.04); IR(0.98); PP(0.49,0.51); FR(0.31,0.31); D(-0.03,0.02);

tGC(8.3); tRSS(1.3);

Processed frame 110

TS(1); RE(1.02); IR(0.98); PP(0.49,0.50); FR(0.30,0.30); D(-0.01,-0.01);

tGC(8.4); tRSS(1.2);

Processed frame 111

TS(1); RE(1.01); IR(0.98); PP(0.49,0.50); FR(0.30,0.30); D(-0.03,0.02);

tGC(8.3); tRSS(1.7);

Processed frame 112

TS(1); RE(0.97); IR(0.98); PP(0.49,0.49); FR(0.30,0.30); D(-0.01,0.01);

tGC(8.5); tRSS(1.4);

Machine Vision Quick Start Guide Calibration

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Processed frame 113

TS(1); RE(0.95); IR(0.98); PP(0.49,0.49); FR(0.30,0.30); D(-0.01,0.00);

tGC(8.5); tRSS(0.9);

TS: tracking state (0: high quality, 1: low quality, -1: initializing, -2: failed), RE: reprojection error in

pixels, IR: inlier ratio, PP: normalized principal point, FR: focal ratios in X and Y, D: first two distortion

parameters, tGC: time offset from camera to gyro in milliseconds, tRSS: adjustment to initial rolling

shutter skew in milliseconds.

One can usually tell whether CAC will converge by looking at the first 50 frames or so.

3.3 Stereo Camera Calibration

Capture Data
Run the following command while rotating the camera:

rm -rf record_stereo

timeout -s SIGINT 30s mvCapture -s -t -d record_stereo

If too many MIPI messages, one can turn them off with:

dmesg -n 1

See the tracking camera section for more details.

Calibrate Intrinsic Parameters
Calibrate the left camera by running:

mvCACPlayback -b eagle -s 100 record_stereo -o left_undist.avi

The output file is located at record_stereo/cacLeft.cal. Calibrate the right camera by running:

mvCACPlayback -b eagle -s 100 -u record_stereo -o right_undist.avi

The output file is located at record_stereo/cacRight.cal. See the tracking camera section for more

details.

Calibrate Extrinsic Parameters
Run the following command:

mvSACPlayback -s 100 -e 200 record_stereo -o stereo_undist.avi

mvSACPlayback reads intrinsic parameters from record_stereo/cacLeft.cal and

record_stereo/cacRight.cal. The output looks like below:

Reprojection error=0.659759

Inlier ratio=0.960402

Stereo calibration:

rRL=0.007858 -0.017013 -0.003425

tRL=-0.080000 0.000000 0.000000

It will also generate a file named record_stereo/sac.xml, which can be used directly by mvDFS.

NOTE: The default distortion model in sac.xml is fisheye model. Use the -m flag to change to other

models.

Machine Vision Quick Start Guide Calibration

80-H9220-3 Rev. A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

Verify calibration quality
Play the output video file (output.avi). Far away objects should appear gray, without any red or green

edges.

Store Calibrations
Because the calibration is particular to the board and not any specific data sequence, it is common to

move the final calibration files to a well-known location (e.g., /usr/share/mv/cal/) to be used by all

applications.

3.4 High-Resolution Camera Calibration

Capture Data
Run the following command while rotating the camera:

timeout <ARGS> mvCapture -r -t -p 2 -d record_hires

The -p 2 option sets the resolution to 720p. One may want to use a different resolution to match the

aspect ratio of the intended use case. Please use caution when going higher than 720p, as it may strain the

internal storage space and file I/O. Usually one can calibrate at lower resolution and scale the result.

See downward facing camera section for more details.

Calibrate Camera Intrinsic Parameters
Run the following command:

mvCACPlayback -b eagle -s 100 record_hires

See downward facing camera section for more details.

Store Calibration
Because the calibration is particular to the board and not any specific data sequence, it is common to

move the final calibration files to a well-known location (e.g., /usr/share/mv/cal/) to be used by all

applications.

