

Qualcomm Technologies, Inc.

Qualcomm Snapdragon and Qualcomm Snapdragon Flight are products of Qualcomm Technologies, Inc. Other Qualcomm products
referenced herein are products of Qualcomm Technologies, Inc. or its other subsidiaries.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Snapdragon
Flight is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their
respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2017-2018 Qualcomm Technologies, Inc. All rights reserved.

Machine Vision

Application Programming Interface

80-H9220-2 Rev. B

January 15, 2018

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

1 Introduction

The release numbering scheme follows conventions in www.semver.org

1.1 Overview
Qualcomm's Machine Vision SDK provides highly runtime optimized and state of the art
computer vision algorithms to enable such features as localization, autonomy, and obstacle
avoidance. Some example features included are:

• Camera Auto Calibration (CAC) for online monocular camera calibration.

• Camera Parameter Adjustment (CPA) for auto gain and exposure control.

• Depth from Stereo (DFS) for dense depth mapping.

• Downward Facing Tracker (DFT) for relative localization.

• Stereo Auto-Calibration (SAC) for online calibration of a stereo camera rig.

• Sequence Reader/Write (SRW) for reading and writing MV data sequences.

• Visual Inertial Simultaneous Localization and Mapping (VISLAM) for 6-DOF localization and
pose estimation.

• Voxel Map (VM) for 3D depth fusion and mapping.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

2 Class Documentation

2.1 mvAttitudeData Struct Reference

#include <mvSRW.h>

2.1.1 Detailed Description
Attitude estimate.

Parameters:
timestamp Timestamp of data in microseconds.

rotation_matrix World to body rotation matrix (R) in row major order. Example:

a0 = [0 0 g]

 a = R^T * a0

 a = [-sin(pitch)

 cos(pitch) * sin(roll)

 cos(pitch) * cos(roll)] * g

where pitch, roll, and yaw are using Tait-Bryan ZYX convention and

yaw from magnetic north.

2.2 mvCACConfiguration Struct Reference

#include <mvCAC.h>

2.2.1 Detailed Description
Configuration parameters for initializing mvCAC.

Parameters:
maxNumKeypoints Maximum number of key points used for tracking.

tauGyroCamera Initial value for time offset from camera to gyroscope, in

microseconds.

tauRollingShutterSkew Initial value for offset of rolling shutter skew, in

microseconds.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

principalPointErrorStddev Standard deviation of the error between initial principal point

and the ground truth, unit-less (normalized by image size).

focalRatioErrorStddev Standard deviation of the error between initial focal ratio and

the ground truth, unit-less (focal ratio = focal length / image

width).

distortionErrorStddev Standard deviation of the error between initial lens distortion

parameters and the ground truth.

rbcErrorStddev Standard deviation of the error between initial gyro-camera

orientation and the ground truth. Measured for rbc in axis-

angle representation.

tauGCErrorStddev Standard deviation of the error between initial gyro-camera

time offset and the ground truth, in microseconds.

tauRSSErrorStddev Standard deviation of the error between initial offset of rolling

shutter skew and the ground truth, in microseconds.

2.3 mvCACStatus Struct Reference

#include <mvCAC.h>

2.3.1 Detailed Description
CAC status.

Parameters:
reprojectionError Re-projection error in pixels.

inlierRatio Inlier ratio.

2.4 mvCameraConfiguration Struct Reference

#include <mv.h>

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

2.4.1 Detailed Description
Camera calibration parameters. This information could come from any calibration procedure
including the CAC feature within this library.

The pixel coordinate space [u, v] has the origin [0, 0] in the upper-left image corner. The u-axis
runs towards right along the row in memory address increasing order, and the v-axis runs
downward along the column also in memory address increasing order but with a stride length
equal to the row width.

The camera coordinate system [x, y, z] is centered on the camera principle point. The positive
x-axis of the camera points from the center principle point along that row of pixels [u]. The y-
axis points down from the camera center along a column of pixels [v]. The z-axis points directly
out along the optical axis in the direction that the camera is pointing.

NOTE: This is the same coordinate system used by OpenCV.

Parameters:
pixelWidth Width of the image in pixels.

pixelHeight Height of the image in pixels.

memoryStride Memory width in bytes to the same pixel one row below.

uvOffset Optional memory offset to UV plane for NV21 images. Note, this is

the U and V color planes of the NV21 format and not to be confused

with the u and v axes in image space.

principalPoint[2] Principal point [u, v] in pixels is defined relative to camera origin in

pixel space where [0, 0] is the upper-left image corner, u runs towards

right along the row, and v runs downward along the column.

focalLength[2] Focal length expressed in pixels and as separate components along the

image [width, height]. These components are aligned with the [u, v]

axes of the principalPoint[2].

distortion Distortion coefficients. All unused array elements must be set to 0.

distortion[0] would be equivalent to k1 in OpenCV or the constant a in

the fisheye paper, distortion[1] would be k2 or the constant b in the

paper, and so on.

distortionModel The distortion model is limited to the following values:

• 0 = No distortion model

• 4 = Four parameter polynomial [k1, k2, p1, p2] plumb-line (a.k.a.,
Brown-Conrady) model [D. C. Brown, "Photometric Engineering", Vol.
32, No. 3, pp.444-462 (1966)]. Compatible with the oldest Caltech
Matlab Calibration Toolbox
(http://www.vision.caltech.edu/bouguetj/calib_doc

/). To fill from OpenCV, declare cv::Mat for distortions with 5 rows (1

columns), set it to zeros and use flag cv::CALIB_FIX_K3 with
cv::calibrateCamera.

• 5 = Five parameter polynomial [k1, k2, p1, p2, k3] plumb-line model.
Compatible with current Matlab toolbox. To fill from OpenCV, declare
cv::Mat for distortions with 5 rows, use flag cv::CALIB_FIX_K4 use
cv::calibrateCamera.

• 8 = Eight parameter rational polynomial (i.e.,
CV_CALIB_RATIONAL_MODEL) [k1, k2, p1, p2, k3, k4, k5, k6].

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

• 10 = FishEye model [S.Shah, "Intrinsic Parameter Calibration Procedure
for a (High-Distortion) Fish-eye Lens Camera with Distortion Model and
Accuracy Estimation"]. To fill from OpenCV, use cv::fisheye::calibrate.

2.5 mvCameraData Struct Reference

#include <mvSRW.h>

2.5.1 Detailed Description

Parameters:
desc Camera descriptor to be used as correspondence with camera name

given by frames.

params Camera parameters.

2.6 mvCameraExtrinsicParameters Struct Reference

#include <mvSRW.h>

2.6.1 Detailed Description

Parameters:
rbc Rotation from camera coordinate to body coordinate use by attitude.

timeOffset Offset between camera and IMU timestamps. IMU timestamp

translates to camera timestamp t + timeOffset.

rollingShutterSkew Rolling shutter skew of the camera, which is the elapsed time from

beginning of the first image row to the beginning of the last row.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

2.7 mvCPA_Configuration Struct Reference

#include <mvCPA.h>

2.7.1 Detailed Description
Configuration parameters for initializing mvCPA.

MVCPA_MODE_HISTOGRAM follows the steps below, and stops when desired frame
brightness is achieved:

1. Set exposure and gain to minimum
2. Increase gain until hitting soft max
3. Increase exposure until hitting soft max
4. Increase gain until hitting max
5. Increase exposure until hitting max

Parameters:
width Input image width.

height Input image height.

format Input image format.

cpaType CPA algorithm type.

legacyCost Parameters for cpaType MVCPA_MODE_LEGACY or

MVCPA_MODE_COST.

startExposure Initial exposure value (normalized to 0.0 - 1.0 range).

startGain Initial gain value (normalized to 0.0 - 1.0 range).

filterSize Internal filter size for exposure and gain changes [larger the

slower convergence (0 = no filtering)].

gainCost Cost to increase gain used for cost based approach. Guidelines:

 gainCost and exposureCost ratio will in the long run be the

ratio between gain and exposure values. The sum of gainCost

and exposureCost influences how much brightness cost is

weight.

 if gainCost+exposureCost > 1.0, minimizing gain and exposure

values is weight higher then then hit brightness goal.

 If sum < 1.0 brightness goal is more important.

exposureCost Cost to increase exposure.

enableHistogramCost Turns on extra saturation protection for cost based algorithm.

thresholdUnderflowed Allowed brightness margin based on default goal 128 (e.g., with

systemBrightnessMargin 30, the brightness goal can be

dynamically in [98, 158].

thresholdSaturated Overexposure threshold on mean brightness of a single block.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

systemBrightnessMargin Underexposure threshold on mean brightness of a single block.

histogram Parameters for cpaType MVCPA_MODE_HISTOGRAM.

exposureMin Minimum exposure value (0 < exposureMin). Typically very

close to 0, such as 0.001.

exposureSoftMax Soft maximum exposure value (exposureMin <=

exposureSoftMax). Exposure > exposureSoftMax if gain ==

gainMax. Typically in the low range to minimize motion blur,

such as 0.2. This value can potentially be increases for robots

limited to slow speeds.

exposureMax Maximum exposure value (exposureSoftMax <= exposureMax

<= 1). Set exposureMax to be either exposureSoftMax or 1. Do

the former if you would rather have dark image over blurry

image. Do the latter if it’s the opposite.

gainMin Minimum gain value (0 < gainMin). Typically very close to 0,

such as 0.001.

gainSoftMax Soft maximum gain value (gainMin <= gainMax). Gain >

gainSoftMax if exposure >= exposureSoftMax. Typically in the

low range to reduce noise, such as 0.3. Set gainSoftMax to the

maximum gain value which produces acceptable noise (e.g.,

acceptable denoising artifacts) for your camera.

gainMax Maximum gain value (gainSoftMax <= gainMax <= 1).

logEGPStepSizeMin Minimum step size of exposure-gain product adjustment in each

update. log2(new_exposure * new_gain) = log2(exposure *

gain) + delta 0 < logEGPStepSizeMin <= abs(delta) <=

logEGPStepSizeMax Typically very close to 0, such as 0.001.

Adjust logEGPStepSizeMax to trade between convergence

speed and stability. The default value is 1.0. Larger value

converges faster, but may oscillate.

logEGPStepSizeMax Maximum step size of exposure-gain product adjustment in

each update. See logEGPStepSizeMin. Typically around 1.0.

2.8 mvDFSParameters Struct Reference

#include <mvDFS.h>

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

2.8.1 Detailed Description
The parameters optionally use to initialize DFS.

Parameters:
textureThreshold Filters out areas of the image without texture. Range is [0 -

1] with 0 meaning no threshold is applied. A good value is

~0.1.

aggregationWindowWidth Size of the aggregation window.

aggregationWindowHeight Size of the aggregation window.

maxSpeckleSize If a block of pixels with similar disparity is smaller than

maxSpeckleSize it will be removed.

2.9 mvDFT_Configuration Struct Reference

#include <mvDFT.h>

2.9.1 Public Attributes
• int minNrFeatures

camera intrinsic calibration params

• int maxNrFeatures

2.9.2 Detailed Description
Configuration parameters for initializing mvDFT.

2.9.3 Member Data Documentation

int maxNrFeatures
minNrFeatures forced as input to optical flow (the fewer, the less stable in texture poor
areas)

2.10 mvDFT_Data Struct Reference

#include <mvDFT.h>

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

2.10.1 Detailed Description
2D displacement estimate from mvDFT + quality indicators.

2.11 mvFrame Struct Reference

#include <mvSRW.h>

2.11.1 Detailed Description
Camera frame.

Parameters:
timestamp Timestamp of data in microseconds. Time must be center of exposure

time and not the start or end of frame.

leftImage This is the only image in the monocular case. In the stereo case, this is

the left image.

rightImage In the stereo case, this is the right image. In the monocular case, it is

invalid.

2.12 mvGPStimeSyncData Struct Reference

#include <mvSRW.h>

2.12.1 Detailed Description
GPS time sync data.

Parameters:
timestamp Timestamp of data in microseconds.

bias Value for the time bias/offset between GPS and IMU (system)

clocks.

GPStimeUncertaintyStd GPS time uncertainty.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

2.13 mvGPSvelocityData Struct Reference

#include <mvSRW.h>

2.13.1 Detailed Description
GPS velocity data.

Parameters:
timestamp GPS Timestamp of data in picoseconds.

x Velocity for the x-axis.

y Velocity for the y-axis.

z Velocity for the z-axis.

2.14 mvImage Struct Reference

#include <mvSRW.h>

2.14.1 Detailed Description
Image data structure.

Parameters:
pixels Pointer to 8-bit grayscale image luminance data.

width Width of image in pixels.

height Height of image in pixels.

memoryStride Number of bytes to pixel directly one row below.

2.15 mvIMUData Struct Reference

#include <mvSRW.h>

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

2.15.1 Detailed Description
IMU data structure.

Parameters:
timestamp Timestamp of data in microseconds.

x Value for the x-axis.

y Value for the y-axis.

z Value for the z-axis.

2.16 mvPose3DR Struct Reference

#include <mv.h>

2.16.1 Detailed Description
3-DOF pose information in rotation matrix form.

Parameters:
matrix Rotation matrix [R] in row major order.

2.17 mvPose6DET Struct Reference

#include <mv.h>

2.17.1 Detailed Description
Pose information in Euler-Translation form.

Parameters:
translation[3] Translation vector in use defined units.

euler[3] Euler angles in the Tait-Bryan ZYX convention.

 euler[0] = rotation about x-axis.

 euler[1] = rotation about y-axis.

 euler[2] = rotation about z-axis (defined from y-axis).

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

2.18 mvPose6DRT Struct Reference

#include <mv.h>

2.18.1 Detailed Description
6-DOF pose information in Rotation-Translation matrix form.

Parameters:
matrix [R | T] rotation matrix + translation column vector in row major order.

2.19 mvSACConfiguration Struct Reference

#include <mvSAC.h>

2.19.1 Detailed Description
Configuration parameters for initializing mvSAC.

Parameters:
maxNumKeypoints Maximum number of key points used for tracking.

2.20 mvSACStatus Struct Reference

#include <mvSAC.h>

2.20.1 Detailed Description
SAC status.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Parameters:
reprojectionError Re-projection error in pixels.

inlierRatio Inlier ratio.

2.21 mvStereoConfiguration Struct Reference

#include <mv.h>

2.21.1 Detailed Description
Stereo rig configuration. This information could come from any calibration procedure including
the SAC feature within this library. The cameras in the Qualcomm Flight stereo kit are laid out
in such a way as when looking from behind the cameras and into the direction that the camera
points, the left camera is camera[0] and the right camera is camera[1]. The camera coordinate
systems are described in the mvCameraConfiguration description.

The rig coordinate system is aligned with the camera[0] coordinate system. The positive x-axis
is aligned with the camera[0] u-axis but would also be fairly close to the line between the
centers of camera[0] and camera[1] for the Qualcomm Flight stereo kit. This is the same
coordinate system used by OpenCV.

See the Snapdragon::DfsRosNode::InitDfs() example in
https://github.qualcomm.com/ATLFlight/dfs-ros-

example/blob/develop/src/nodes/SnapdragonDfsRos.cpp for and example

of going from ROS calibration parameters to MV parameters.

Parameters:
translation[3] Relative distance in meters added to a point from camera[1] in rig

coordinates to align to the same point in camera[0]. Therefore

translation[0] is usually a negative number nearly equal to the

baseline value for the Qualcomm Flight stereo kit since camera[1]

is approximately the baseline value away along the rig coordinates

x-axis. Same as self.T from ROS camera calibration tool and same

as T from OpenCV cvStereoCalibrate() function.

• translation[0] = x-axis translation.

• translation[1] = y-axis translation.

• translation[2] = z-axis translation (defined from the x-y plane).

rotation[3] Relative rotation between cameras. The rotation is a scaled axis-

angle vector representation of the rotation between the two

cameras also known as the Rodrigues' rotation formula in the

aforementioned rig coordinate system. See

https://jsfiddle.net/1gej4qyp/ for example of

converting a rotation matrix to scales-axis representation. Same as

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

R from OpenCV cvStereoCalibrate() function. The ROS

calibration tool output self.R would be the input rotation matrix to

the Rodrigues' formula.

camera[2] Left/right camera calibrations.

correctionFactors[4] Polynomial coefficients for a distance-to-distance correction

function.

2.22 mvTrackingPose Struct Reference

#include <mv.h>

2.22.1 Detailed Description
Pose information along with a quality indicator.

Parameters:
pose 6-DOF pose.

poseQuality Quality of the pose.

2.23 mvVISLAMMapPoint Struct Reference

#include <mvVISLAM.h>

2.23.1 Public Types
• enum QUALITY_T { LOW, MEDIUM, HIGH }

2.23.2 Detailed Description
Map point information from VISLAM.

Parameters:
id Unique ID for map point.

pixLoc 2D measured pixel location in pixels.

tsf 3D location in spatial frame in meters.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

p_tsf Error covariance for tsf.

depth Depth of map point from camera in meters.

depthErrorStdDev Depth error standard deviation in meters.

pointQuality Quality of the map point as per current VISLAM state.

2.23.3 Member Enumeration Documentation

enum QUALITY_T

Enumerator:
LOW additional low-quality points collected for e.g. collision avoidance

MEDIUM Points that are not "in state".

HIGH Points that are "in state".

2.24 mvVISLAMPose Struct Reference

#include <mvVISLAM.h>

2.24.1 Detailed Description
Pose information along with a quality indicator for VISLAM.

Parameters:
poseQuality Quality of the pose (no pose is provided if

MV_TRACKING_STATE_INITIALIZING or

MV_TRACKING_STATE_FAILED). If the IMU measurement

range or bandwidth is exceeded,

MV_TRACKING_STATE_LOW_QUALITY is returned. In

normal operation, poseQuality should correspond to

MV_TRACKING_STATE_HIGH_QUALITY.

bodyPose Body pose estimate in rotation-translation matrix form [R_{sb} |

T_{sb}]. T_{sb} is the estimate of the translation of the origin of

the body (b) or accelerometer frame relative to the spatial (s) frame

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

in the spatial frame (meters). The spatial frame corresponds to the

body frame at initialization. R_{sb} is the estimate of the

corresponding rotation matrix.

gravityCameraPose Gravity aligned pose of camera estimate in rotation-translation

matrix form [R_{cs'} | T_{cs'}]. T_{cs'} is the estimate of the

translation of the origin of the camera frame (c) relative to the

gravity aligned spatial (s') frame in the camera frame (meters). The

gravity aligned spatial frame corresponds to the body frame at

initialization rotated to compensate for pitch and roll. R_{cs'} is the

estimate of the corresponding rotation matrix.

errCovPose Error covariance matrix for bodyPose estimate.

timeAlignment Camera IMU time misalignment estimate (seconds).

velocity Velocity estimate, vsb, of origin of accelerometer (b=body) in

spatial frame (m/s). The spatial frame corresponds to the body

frame at initialization.

errCovVelocity Error covariance for velocity estimate vsb ((m/s)^2).

angularVelocity Angular velocity estimate in body (accelerometer) frame (rad/s).

gravity Gravity vector estimate in spatial frame (m/s^2). The spatial frame

corresponds to the body frame at initialization.

errCovGravity Error covariance for gravity estimate in spatial frame ((m/s^2)^2).

wBias Gyro bias estimate (rad/s).

aBias Accelerometer bias estimate (m/s^2).

Rbg Accelerometer gyro rotation matrix estimate (b = body =

accelerometer, g = gyro).

aAccInv Inverse of accelerometer scale and non-orthogonality estimate.

aGyrInv Inverse of gyro scale and non-orthogonality estimate.

tbc Accelerometer-camera translation misalignment vector estimate

(meters). t_{bc} is the estimate of the translation of the origin of the

camera (c) frame relative to that of the body (b) or accelerometer

frame in the body frame.

Rbc Accelerometer-camera rotational misalignment matrix estimate.

Can be used together with tbc to rotate vector in camera frame x_c

to IMU frame x_imu via [Rbc|tbc]x_c = x_imu.

errorCode Error code (includes reasons for reset) bit:

• 0 : Reset: cov not pos definite

• 1 : Reset: IMU exceeded range

• 2 : Reset: IMU bandwidth too low

• 3 : Reset: not stationary at initialization

• 4 : Reset: no features for x seconds

• 5 : Reset: insufficient constraints from features

• 6 : Reset: failed to add new features

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

• 7 : Reset: exceeded instant velocity uncertainty

• 8 : Reset: exceeded velocity uncertainty over window

• 10 : Dropped IMU samples

• 11 : Intrinsic camera cal questionable

• 12 : Insufficient number of good features to initialize

• 13 : Dropped camera frame

• 14 : Dropped GPS velocity sample

• 15 : Sensor measurements with uninitialized time stamps or
uninitialized uncertainty (set to 0) If a reset occurs, the last "good"
pose will be used after initialization. To reset the pose, call
mvVISLAM_Reset(mvVISLAM* pObj, bool resetPose) with
resetPose set to true.

time Timestamp of pose in nanoseconds in system time.

2.25 mvVM_CollisionInfo Struct Reference

#include <mvVM.h>

2.25.1 Detailed Description
Return data for collision checking and distance computation functions.

Parameters:
point 3D sample point location in meters that collided, this is only valid for

collision types MV_COLLISION_YES and

MV_COLLISION_UNKNOWN.

type Return value of the collision detection.

2.26 mvVM_IntegrationConfiguration Struct Reference

#include <mvVM.h>

2.26.1 Public Types
• enum { SURFACE, VISIBLE, EXISTING_VISIBLE }

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

2.26.2 Detailed Description
Configuration structure for integration functions.

Parameters:
noise Noise associated with range measurements.

filterWeight Filter delay, essentially the length of the moving average filter.

updateMode What parts of the voxel grid are updated with new range data.

2.26.3 Member Enumeration Documentation

anonymous enum

Enumerator:
SURFACE only update around measurements

VISIBLE update whole visible frustum

EXISTING_VISIBLE update existing voxels in the visible frustum

3 File Documentation

3.1 mv.h File Reference
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>

3.1.1 Classes
• struct mvCameraConfiguration

• struct mvStereoConfiguration

• struct mvPose3DR

• struct mvPose6DRT

• struct mvPose6DET

• struct mvTrackingPose

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

3.1.2 Enumerations
• enum MV_TRACKING_STATE

• enum MV_COLLISION : int32_t { MV_COLLISION_NO = 0, MV_COLLISION_YES = 1,
MV_COLLISION_UNKNOWN = 2 }

3.1.3 Functions
• const char * mvVersion (void)

• void mvPose6DETto6DRT (mvPose6DET *pose, mvPose6DRT *mvPose)

• void mvPose6DRTto6DET (mvPose6DRT *pose, mvPose6DET *mvPose)

• void mvMultiplyPose6DRT (const mvPose6DRT *A, const mvPose6DRT *B, mvPose6DRT
*out)

• void mvInvertPose6DRT (mvPose6DRT *pose)

• void mvGetGLProjectionMatrix (mvCameraConfiguration *camera, float64_t nearClip,
float64_t farClip, float64_t *mat, bool transpose)

• void mvPoseAngles (mvPose6DRT *pose, float *yaw, float *pitch, float *roll)

3.1.4 Detailed Description
mv.h

Common data structures and utilities for the Machine Vision SDK.

3.1.5 Enumeration Type Documentation

enum MV_COLLISION : int32_t

Return values for collision detection functions.

Enumerator:
MV_COLLISION_NO no collision occurred

MV_COLLISION_YES a collision was found

MV_COLLISION_UNKNOWN unmapped area was found

enum MV_TRACKING_STATE

Tracking state quality.

3.1.6 Function Documentation

void mvGetGLProjectionMatrix (mvCameraConfiguration * camera,
float64_t nearClip, float64_t farClip, float64_t * mat, bool transpose)

OpenGL helper function.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

Parameters:
transpose Flag of whether transpose is needed.

void mvInvertPose6DRT (mvPose6DRT * pose)

Invert mvPose6RT in place, computes pose = pose^-1

void mvMultiplyPose6DRT (const mvPose6DRT * A, const mvPose6DRT
* B, mvPose6DRT * out)

Multiply two mvPose6DRT, computes out = A * B

void mvPose6DETto6DRT (mvPose6DET * pose, mvPose6DRT *
mvPose)

Convert Euler-Translation pose to Rotation-Translation.

void mvPose6DRTto6DET (mvPose6DRT * pose, mvPose6DET *
mvPose)

Convert Rotation-Translation pose to Euler-Translation. Follows Tait-Bryan convention so
that:

 euler[0] = rotation about x-axis.

 euler[1] = rotation about y-axis.

 euler[2] = rotation about z-axis (defined from y-axis).

void mvPoseAngles (mvPose6DRT * pose, float * yaw, float * pitch,
float * roll)

Get Yaw, Pitch, and Roll of camera pose in target coordinate system (Z up, Y right, X out
of target and camera system is x right, y down and z out of camera).

Parameters:
pose Pose to calculate angles from.

yaw Results of yaw calculation, rotation of x axis direction y (in x/y plane)

(target coordinates).

pitch Results of pitch calculation, rotation of z axis direction x (in z/x plane)

(target coordinates).

roll Results of roll calculation, rotation of z axis direction y (in z/y plane)

(target coordinates).

const char* mvVersion (void)

Return string of version information.

3.2 mvCAC.h File Reference
#include <mv.h>

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

3.2.1 Classes
• struct mvCACConfiguration

• struct mvCACStatus

3.2.2 Typedefs
• typedef struct mvCAC mvCAC

3.2.3 Functions
• mvCAC * mvCAC_Initialize (const mvCameraConfiguration *pCamCfg, const uint8_t *mask,

uint32_t maskStride, const mvPose3DR *pRbc, const mvCACConfiguration *pCACCfg)

• void mvCAC_Deinitialize (mvCAC *pObj)

• void mvCAC_AddGyro (mvCAC *pObj, int64_t timestamp, const float64_t x, const float64_t y,
const float64_t z)

• void mvCAC_AddFrame (mvCAC *pObj, int64_t timestamp, int64_t rollingShutterSkew, const
uint8_t *pixels, uint32_t stride)

• void mvCAC_AddTrackedPoints (mvCAC *pObj, int64_t timestamp, int64_t
rollingShutterSkew, const float32_t *pts1, const float32_t *pts2, uint32_t numPts)

• MV_TRACKING_STATE mvCAC_GetCalibration (mvCAC *pObj,
mvCameraConfiguration *pCfg, mvPose3DR *pRbc, float64_t *tauGyroCamera, float64_t
*tauRollingShutterSkew, mvCACStatus *pStatus)

• float64_t mvCAC_FisheyeToPolynomial (mvCameraConfiguration *pCfg, int32_t model)

• float32_t mvCAC_ScoreSceneTexture (const uint8_t *pixels, uint32_t width, uint32_t height,
uint32_t stride)

3.2.4 Detailed Description
mvCAC.h

Machine Vision, Camera Auto-Calibration (CAC)

3.3 Overview
This module performs mono camera auto-calibration, which does not require a known pattern
in front of the camera. It calibrates the following parameters: camera intrinsic, lens distortion,
camera-gyro orientation, camera-gyro time offset.

3.4 Limitations
CAC may produce incorrect results if the following conditions are not met:

• Exposure time must be shorter than 5ms.

• Adjacent frames must have similar brightness level. It is recommended to use constant exposure
and gain, if AEC cannot meet this requirement.

3.5 Recommendations
CAC converges in 900 frames if the following conditions are met:

• Camera rotates around all 3 axis.

• Median inter-frame camera rotation is at least 2 degrees.

• 99% of inter-frame camera rotation is no more than 6 degrees.

• At least 80% of the scene is textured, and at least 3 meters away.

• Inter-frame camera translation is no more than 1cm.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

• Restriction on camera translation can be relaxed in proportion to scene distance. For example, if
80% of the scene is 30 meters away, CAC can tolerate inter-frame camera translation up to 10cm.

3.5.1 Typedef Documentation

typedef struct mvCAC mvCAC

Camera Auto-Calibration (CAC)

3.5.2 Function Documentation

void mvCAC_AddFrame (mvCAC * pObj, int64_t timestamp, int64_t
rollingShutterSkew, const uint8_t * pixels, uint32_t stride)

Add camera frame.

This function performs feature tracking internally. Call mvCAC_AddTrackedPoints
instead for external tracking.

Parameters:
pObj Pointer to CAC object.

timestamp Timestamp of the first row at the center of exposure, in

microseconds.

rollingShutterSkew The duration between the start of first row exposure and the start of

last row exposure, in microseconds.

pixels Pointer to the pixels of luma channel.

stride Stride of the luma channel in bytes.

void mvCAC_AddGyro (mvCAC * pObj, int64_t timestamp, const
float64_t x, const float64_t y, const float64_t z)

Add gyro measurement

Gyro measurements must be added in chronological order. All measurements received
before the end of the frame must be added before either mvCAC_AddFrame or
mvCAC_AddTrackedPoints is called.

Parameters:
pObj Pointer to CAC object.

timestamp Timestamp of the gyro measurement, in microseconds.

x Gyro measurement for X axis, in rad/s.

y Gyro measurement for Y axis, in rad/s.

z Gyro measurement for Z axis, in rad/s.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

void mvCAC_AddTrackedPoints (mvCAC * pObj, int64_t timestamp,
int64_t rollingShutterSkew, const float32_t * pts1, const float32_t *
pts2, uint32_t numPts)

Add tracked points in a camera frame.

This function allows the caller to do its own feature tracking. If the caller doesn't have one,
call mvCAC_AddFrame instead. The feature tracker should have tracking error less than
half of a pixel, and less than 10% outliers.

Parameters:
pObj Pointer to CAC object.

timestamp Timestamp of the first row at the center of exposure, in

microseconds.

rollingShutterSkew The duration between the start of first row exposure and the start of

last row exposure, in microseconds.

pts1 Tracked 2D points in the previous frame. X, Y coordinates are stored

as $ (x_k, y_k) = (pts1[k*2], pts1[k*2+1]). k = 0 .. numPts-1 $

pts2 Tracked 2D points in the current frame.

numPts Number of tracked points.

void mvCAC_Deinitialize (mvCAC * pObj)

Deinitialize Camera Auto-Calibration (CAC) object.

Parameters:
pmObj Pointer to CAC object.

float64_t mvCAC_FisheyeToPolynomial (mvCameraConfiguration *
pCfg, int32_t model)

Convert fisheye model to polynomial model.

See mv.h for more details on distortion model.

Parameters:
pCfg Pointer to the camera parameters to be converted and updated. The

input distortion model must be 10, otherwise no conversion will be

performed.

model Desired distortion model, which can be either 4, 5, or 8. No conversion

will be performed if the specified model is not allowed.

Returns:
RMSE between output and input model, in pixels. Returns 0 if conversion is not performed.

MV_TRACKING_STATE mvCAC_GetCalibration (mvCAC * pObj,
mvCameraConfiguration * pCfg, mvPose3DR * pRbc, float64_t *
tauGyroCamera, float64_t * tauRollingShutterSkew, mvCACStatus *
pStatus)

Get the calibration result.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

Parameters:
pObj Pointer to CAC object.

pCfg Calibrated intrinsic parameters. Set to nullptr if not needed. The

distortion model is always fisheye (model 10).

pRbc Calibrated Rbc. Set to nullptr if not needed.

tauGyroCamera Calibrated time offset from camera to gyroscope, in

microseconds. Set to nullptr if not needed.

tauRollingShutterSkew Calibrated offset of rolling shutter skew, in microseconds. Set to

nullptr if not needed.

td Calibrated time offset between camera and attitude, in

microseconds. Set to nullptr if not needed.

pStatus CAC status. Set to nullptr if not needed.

Returns:
Tracking state. No calibration result is returned if state < 0.

mvCAC* mvCAC_Initialize (const mvCameraConfiguration * pCamCfg,
const uint8_t * mask, uint32_t maskStride, const mvPose3DR * pRbc,
const mvCACConfiguration * pCACCfg)

Initialize Camera Auto-Calibration (CAC) object.

Parameters:
pCamCfg Initial values for camera calibration parameters. memoryStride and

uvOffset are ignored.

mask Mask of good camera pixels. Its size is the same as camera frame size.

0 means the corresponding camera pixel should be ignored by CAC. >0

means the corresponding camera pixel should be processed by CAC. If

mask == nullptr, CAC will process all camera pixels, as if all mask

pixels > 0.

maskStride Stride of mask in bytes. Ignored when mask == nullptr.

pRbc Initial value for rotation from camera coordinate frame to body

coordinate frame. It is assumed that the gyroscope frame is the same as

the body frame.

pCACCfg CAC configuration parameters.

Returns:
Pointer to CAC object; returns NULL if failed.

float32_t mvCAC_ScoreSceneTexture (const uint8_t * pixels, uint32_t
width, uint32_t height, uint32_t stride)

Score the scene for textureness.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Parameters:
pixels Pointer to the pixels of luma channel.

width Image width.

height Image height.

stride Image stride in bytes.

Returns:
Score between 0 and 1. Higher score means more texture in the scene.

3.6 mvCPA.h File Reference
#include <mv.h>

3.6.1 Classes
• struct mvCPA_Configuration

3.6.2 Typedefs
• typedef struct mvCPA mvCPA

3.6.3 Enumerations
• enum MVCPA_MODE

• enum MVCPA_FORMAT

3.6.4 Functions
• mvCPA * mvCPA_Initialize (const mvCPA_Configuration *cpaConfig)

• void mvCPA_Deinitialize (mvCPA *pObj)

• void mvCPA_AddFrame (mvCPA *pObj, const uint8_t *pixels, uint32_t stride)

• void mvCPA_GetValues (mvCPA *pObj, float32_t *exposure, float32_t *gain)

3.6.5 Detailed Description
mvCPA.h

Machine Vision, Camera Parameter Adjustment (CPA)

3.7 Overview
CPA provides changes to camera parameters for online auto gain and exposure control.

3.8 Limitations
The following list are some of the known limitations:

• Only designed and tested with OV7251 based camera modules.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

3.8.1 Typedef Documentation

typedef struct mvCPA mvCPA

Camera Parameter Adjustment (CPA)

3.8.2 Enumeration Type Documentation

enum MVCPA_FORMAT

CPA image format.

• MVCPA_FORMAT_GRAY8: 8-bit grayscale format.

• MVCPA_FORMAT_RAW10: Android 10-bit raw format.

• MVCPA_FORMAT_RAW12: Android 12-bit raw format.

enum MVCPA_MODE

CPA algorithm mode.

• MVCPA_MODE_LEGACY: Unlikely to be the best choice for any use case.

• WARNING: to be deprecated.

• MVCPA_MODE_COST: A good trade off of illumination for viewable images while still
favoring computer vision needs over illumination.

• MVCPA_MODE_HISTOGRAM: Most focused towards computer vision needs and best at
supporting higher speeds of camera movement.

3.8.3 Function Documentation

void mvCPA_AddFrame (mvCPA * pObj, const uint8_t * pixels, uint32_t
stride)

Add image to adjust exposure and gain parameters on. (Assumption is that this was taking
with last returned parameters).

Parameters:
pObj Pointer to CPA object.

pixels Pointer to Luminance pixels of camera frame.

width Width of the given frame data.

height Height of the given frame data.

stride Stride of the given frame data.

void mvCPA_Deinitialize (mvCPA * pObj)

Deinitialize Camera Parameter Adjustment (CPA) object.

Parameters:
pmObj Pointer to CPA object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

void mvCPA_GetValues (mvCPA * pObj, float32_t * exposure, float32_t
* gain)

Access estimated exposure and gain values.

Parameters:
pObj Pointer to CPA object.

exposure Pointer to returned new exposure value estimation.

gain Pointer to returned new gain values estimation.

mvCPA* mvCPA_Initialize (const mvCPA_Configuration * cpaConfig)

Initialize Camera Parameter Adjustment (CPA) object.

Parameters:
cpaConfig Configuration parameters to initialize CPA.

Returns:
Pointer to CPA object; returns NULL if failed.

3.9 mvDFS.h File Reference
#include <mv.h>

3.9.1 Classes
• struct mvDFSParameters

3.9.2 Typedefs
• typedef struct mvDFS mvDFS

3.9.3 Enumerations
• enum MVDFS_MODE

3.9.4 Functions
• mvDFS * mvDFS_Initialize (const mvStereoConfiguration *nConfig, MVDFS_MODE mode,

bool using10bitInput, const mvDFSParameters *params=NULL)

• void mvDFS_Deinitialize (mvDFS *pObj)

• void mvDFS_GetDepths (mvDFS *pObj, const uint8_t *pxlsCamL, const uint8_t *pxlsCamR,
uint16_t numMasks, uint16_t *masks, int16_t minDisparity, int16_t maxDisparity, uint16_t
*disparities, float32_t *invDepth)

• void mvDFS_GetDepthsION (mvDFS *pObj, int fileDesc, void *hostPtr, size_t bufSize,
uint16_t numMasks, uint16_t *masks, int16_t minDisparity, int16_t maxDisparity, uint16_t
*disparities, float32_t *invDepth)

• void mvDFS_GetRectifyingRotations (mvDFS *obj, float32_t *rot1, float32_t *rot2)

• void mvDFS_GetDepthCameraConfiguration (mvDFS *obj, mvCameraConfiguration
*depthCamera)

• void mvDFS_GetRectifiedImages (mvDFS *obj, uint8_t *rectL, uint8_t *rectR)

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

• void mvDFS_EnableRectAdjustment (mvDFS *obj, float *params, unsigned int numParams)

• void mvDFS_DisableRectAdjustment (mvDFS *obj)

3.9.5 Detailed Description
mvDFS.h

Machine Vision, Depth from Stereo (DFS)

3.10 Overview
DFS finds the disparity pixels as the x-axis distance (in pixels) of one place in the left image
verses that same place in the right image. The assumption of a stereo configuration of the
cameras is leveraged for speed. Therefore, this feature is not good for general feature matching.
The disparities are mapped directly to the distance away from the camera. A disparity value of
0 would mean the object is at infinity whereas a disparity value of 28 would mean that the
object is very close.

There are two algorithms supported for flexibility on whether to use the CPU or GPU. However,
the ALG1 on GPU is the primary and preferred algorithm. Although FPS speeds much greater
are possible, a typical configuration supporting 30 FPS for MVDFS_MODE_ALG1_GPU is:
resolution = QVGA

minDisparity = 0

maxDisparity = 28 // detectable distance = 0.6m for focal length ~217 pel

aggregationWindowSize = 11

3.11 Limitations
The following list are some of the known limitations:

• Cannot resolve depths > ~100*(distance between cameras).

• Cannot resolve depth where the field of view does not overlap between both cameras.

• Does not detect transparent, reflective, shiny smooth solid color, overly illuminated, or
inadequately illuminated surfaces.

• Does not detect some surfaces with repeating patterns.

• Rig calibration must be good to < 0.5 pixels projection error between left and right images.

• Does not detect linear object (e.g., power line) that run along same rows in images.

3.11.1 Typedef Documentation

typedef struct mvDFS mvDFS

Depth from Stereo (DFS).

3.11.2 Enumeration Type Documentation

enum MVDFS_MODE

Two different algorithms are currently supported on CPU and one on GPU.

• MVDFS_MODE_ALG0_CPU: Lower quality algorithm but very fast on CPU.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

• MVDFS_MODE_ALG1_CPU: Higher quality algorithm but very slow on CPU. This mode is
primarily for off-target testing since it is too slow for practical use.

• MVDFS_MODE_ALG1_GPU: Higher quality algorithm and very fast on GPU.

3.11.3 Function Documentation

void mvDFS_Deinitialize (mvDFS * pObj)

Deinitialize stereo object.

Parameters:
pObj Pointer to stereo object.

void mvDFS_DisableRectAdjustment (mvDFS * obj)

Disables rectification adjustment.

Parameters:
obj Pointer to stereo object.

void mvDFS_EnableRectAdjustment (mvDFS * obj, float * params,
unsigned int numParams)

Enables rectification adjustment and provides the required parameters.

Parameters:
obj Pointer to stereo object.

params Pointer to buffer containing the rectification adjustment parameters.

numParams Number of rectification adjustment parameters.

void mvDFS_GetDepthCameraConfiguration (mvDFS * obj,
mvCameraConfiguration * depthCamera)

Depth camera. This virtual depth camera is obtained during solving the rectification
problem.

Parameters:
obj Pointer to stereo object.

depthCamera Pointer to camera structure.

void mvDFS_GetDepths (mvDFS * pObj, const uint8_t * pxlsCamL,
const uint8_t * pxlsCamR, uint16_t numMasks, uint16_t * masks,
int16_t minDisparity, int16_t maxDisparity, uint16_t * disparities,
float32_t * invDepth)

Compute inverse depth.

Parameters:
pObj Pointer to stereo object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

pxlsCamL Left camera image.

pxlsCamR Right camera image.

numMasks Number of rectangular masks.

masks Mask defined as rectangular region in the depth image in which

disparities and depth are to be masked out (set to 0). A single region is

defined by four integers being image coordinates of upper left and

bottom right corners of the region; if NULL no masking is done.

minDisparity Lower limit of the disparity range to be scanned.

NOTE: Should be multiple of 4 for optimal speeds.

maxDisparity Upper limit of the disparity range to be scanned.

NOTE: Should be multiple of 4 for optimal speeds.

disparities Optional disparity for each pixel in the left camera image. Caller

allocates and provides buffer with dimensions of camera image.

invDepth Optional depth for each pixel of left camera image in units 1/meters.

Caller allocates the buffer of the size of camera image. Returned 0

values mean depth for given pixel is unknown.

Remarks:
Inverse depth is computed for pixels of rectified left image which is rotated w.r.t. the original
left image by rectifying rotation To get rectifying rotations use function
mvDFS_getRectifyingRotations.

void mvDFS_GetDepthsION (mvDFS * pObj, int fileDesc, void * hostPtr,
size_t bufSize, uint16_t numMasks, uint16_t * masks, int16_t
minDisparity, int16_t maxDisparity, uint16_t * disparities, float32_t *
invDepth)

Compute inverse depth from left and right images stored side-by-side in an ION memory
buffer.

Parameters:
pObj Pointer to stereo object.

fileDesc ION memory file descriptor.

hostPtr Host virtual address to ION memory buffer. The GPU requires this to

be aligned to the device page size.

bufSize Size in bytes of the allocation ION buffer.

numMasks Number of rectangular masks.

masks Mask defined as rectangular region in the depth image in which

disparities and depth are to be masked out (set to 0). A single region is

defined by four integers being image coordinates of upper left and

bottom right corners of the region; if NULL no masking is done.

minDisparity Lower limit of the disparity range to be scanned.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

NOTE: Should be multiple of 4 for optimal speeds.

maxDisparity Upper limit of the disparity range to be scanned.

NOTE: Should be multiple of 4 for optimal speeds.

disparities Optional disparity for each pixel in the left camera image. Caller

allocates and provides buffer with dimensions of camera image.

invDepth Optional depth for each pixel of left camera image in units 1/meters.

Caller allocates the buffer of the size of camera image. Returned 0

values mean depth for given pixel is unknown.

Remarks:
Inverse depth is computed for pixels of rectified left image which is rotated w.r.t. the original
left image by rectifying rotation. To get rectifying rotations use function
mvDFS_getRectifyingRotations.

void mvDFS_GetRectifiedImages (mvDFS * obj, uint8_t * rectL, uint8_t *
rectR)

Returns rectified left and right gray scale image.

Parameters:
obj Pointer to stereo object.

rectL Pointer to rectified left image.

rectR Pointer to rectified right image.

void mvDFS_GetRectifyingRotations (mvDFS * obj, float32_t * rot1,
float32_t * rot2)

Rectification rotation matrices for left and right images as 3x3 rotation matrices.

Parameters:
obj Pointer to stereo object.

rot1 Pointer to 3x3 matrix in which the rotation of left image returned.

rot1 Pointer to 3x3 matrix in which the rotation of left image returned.

mvDFS* mvDFS_Initialize (const mvStereoConfiguration * nConfig,
MVDFS_MODE mode, bool using10bitInput, const mvDFSParameters *
params = NULL)

Initialize stereo object.

Parameters:
pnConfig Pointer to configuration.

mode Select which mode DFS algorithm should run in, i.e quality vs speed vs

GPU vs GPU simulation.

using10BitInput

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

 true: Input images are 10 bits grayscale with 2 bytes / pixel.

 false: Input images are 8 bits grayscale with 1 byte / pixel.

Returns:
Pointer to stereo object; returns NULL if failed.

3.12 mvDFT.h File Reference
#include <mv.h>

3.12.1 Classes
• struct mvDFT_Configuration

• struct mvDFT_Data

3.12.2 Typedefs
• typedef struct mvDFT mvDFT

3.12.3 Functions
• mvDFT * mvDFT_Initialize (const mvDFT_Configuration *nConfig)

• void mvDFT_Deinitialize (mvDFT *pObj)

• void mvDFT_AddImage (mvDFT *pObj, int64_t time, const uint8_t *pxls)

• bool mvDFT_GetResult (mvDFT *pObj, mvDFT_Data *data)

3.12.4 Detailed Description
mvDFT.h

Machine Vision, Downward Facing Tracker (mvDFT)

3.13 Overview
This feature provides frame-by-frame localization for cameras facing mostly straight down.

3.14 Limitations
The following list are some of the known limitations:

• Does not work over transparent, reflective, shiny smooth solid color, overly illuminated, or
inadequately illuminated surfaces.

• Does not work over some surfaces with repeating patterns.

• Camera calibration must be good to < 0.5 pixels re-projection error.

• Velocity must be < 50 pixels/frame.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 34

3.14.1 Typedef Documentation

typedef struct mvDFT mvDFT

Downward Facing Tracker (mvDFT).

3.14.2 Function Documentation

void mvDFT_AddImage (mvDFT * pObj, int64_t time, const uint8_t *
pxls)

Pass camera frame to the mvDFT object.

Parameters:
pObj Pointer to mvDFT object.

time Timestamp of camera frame.

pxls Pointer to camera frame data.

void mvDFT_Deinitialize (mvDFT * pObj)

Deinitialize mvDFT object.

Parameters:
pObj Pointer to mvDFT object.

bool mvDFT_GetResult (mvDFT * pObj, mvDFT_Data * data)

Displacement data.

Parameters:
pObj Pointer to mvDFT object.

data Pointer to mvDFT_Data data array.

Returns:
Success or not.

mvDFT* mvDFT_Initialize (const mvDFT_Configuration * nConfig)

Initialize mvDFT object.

Parameters:
pnConfig Pointer to configuration.

Returns:
Pointer to mvDFT object; returns NULL if failed.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35

3.15 mvSAC.h File Reference
#include <mv.h>

3.15.1 Classes
• struct mvSACConfiguration

• struct mvSACStatus

3.15.2 Typedefs
• typedef struct mvSAC mvSAC

3.15.3 Functions
• mvSAC * mvSAC_Initialize (const mvCameraConfiguration *pCfgL, const

mvCameraConfiguration *pCfgR, const float32_t translation[3], const mvSACConfiguration
*pSACCfg)

• void mvSAC_Deinitialize (mvSAC *pObj)

• void mvSAC_AddFrame (mvSAC *pObj, const uint8_t *pixelsL, uint32_t strideL, const uint8_t
*pixelsR, uint32_t strideR)

• MV_TRACKING_STATE mvSAC_GetCalibration (mvSAC *pObj, mvStereoConfiguration
*pStereoCfg, mvSACStatus *pStatus)

3.15.4 Detailed Description
mvSAC.h

Machine Vision public API, Stereo Auto-Calibration (SAC)

3.16 Overview
This module performs stereo camera auto-calibration, which does not require a known pattern
in front of the camera. It calibrates the following parameters: rotation from left camera to right.

3.17 Limitations
The following list are some of the known limitations:

• Requires textured objects in front of the camera for tracking; Otherwise SAC will not return any
result.

• Exposure time must be shorter than 5ms; Otherwise SAC may return incorrect results.

• Typically needs at least 3 seconds of data to produce good quality results.

3.17.1 Typedef Documentation

typedef struct mvSAC mvSAC

Stereo Auto-Calibration (SAC).

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36

3.17.2 Function Documentation

void mvSAC_AddFrame (mvSAC * pObj, const uint8_t * pixelsL,
uint32_t strideL, const uint8_t * pixelsR, uint32_t strideR)

Add camera frame.

Parameters:
pObj Pointer to SAC object.

pixelsL Pointer to the pixels of luma channel, for the left camera.

strideL Stride of the luma channel in bytes, for the left camera.

pixelsR Pointer to the pixels of luma channel, for the right camera.

strideR Stride of the luma channel in bytes, for the right camera.

void mvSAC_Deinitialize (mvSAC * pObj)

Deinitialize Stereo Auto-Calibration (SAC) object.

Parameters:
pObj Pointer to SAC object.

MV_TRACKING_STATE mvSAC_GetCalibration (mvSAC * pObj,
mvStereoConfiguration * pStereoCfg, mvSACStatus * pStatus)

Get the calibration result.

Parameters:
pObj Pointer to SAC object.

pStereoCfg Stereo configuration.

pStatus SAC status. Set to nullptr if not needed.

Returns:
Tracking state. No calibration result is returned if state < 0.

mvSAC* mvSAC_Initialize (const mvCameraConfiguration * pCfgL,
const mvCameraConfiguration * pCfgR, const float32_t translation[3],
const mvSACConfiguration * pSACCfg)

Initialize Stereo Auto-Calibration (SAC) object.

Parameters:
pCfgL Camera calibration parameters of the left camera. Parameters

memoryStride and uvOffset are ignored.

pCfgR Camera calibration parameters of the right camera. Parameters

memoryStride and uvOffset are ignored.

translation Translation from left camera's coordinate to right camera's coordinate,

measured in meters.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 37

pSACCfg SAC configuration parameters.

Returns:
Pointer to SAC object; returns NULL if failed.

3.18 mvSRW.h File Reference
#include <mv.h>

3.18.1 Classes
• struct mvImage

• struct mvFrame

• struct mvIMUData

• struct mvGPStimeSyncData

• struct mvGPSvelocityData

• struct mvAttitudeData

• struct mvCameraData

• struct mvCameraExtrinsicParameters

3.18.2 Typedefs
• typedef struct mvSRW_Writer mvSRW_Writer

• typedef struct mvSRW_Reader mvSRW_Reader

3.18.3 Functions
• mvSRW_Writer * mvSRW_Writer_Initialize (const char *folderPath, mvMonoCameraInit

*monoCam, mvStereoCameraInit *stereoCam)

• void mvSRW_Writer_Deinitialize (mvSRW_Writer *pObj)

• void mvSRW_Writer_AddImage (mvSRW_Writer *pObj, int64_t time, const uint8_t *pxls)

• void mvSRW_Writer_AddStereoImage (mvSRW_Writer *pObj, int64_t time, const uint8_t
*pxlsL, const uint8_t *pxlsR)

• void mvSRW_Writer_AddAccel (mvSRW_Writer *pObj, int64_t time, float64_t x, float64_t y,
float64_t z)

• void mvSRW_Writer_AddGyro (mvSRW_Writer *pObj, int64_t time, float64_t x, float64_t y,
float64_t z)

• void mvSRW_Writer_AddGpsTimeSync (mvSRW_Writer *pObj, int64_t time, int64_t bias,
int64_t drift, int64_t GPStimeUncertaintyStd)

• void mvSRW_Writer_AddGpsVelocity (mvSRW_Writer *pObj, int64_t time, float64_t x,
float64_t y, float64_t z, float64_t xStd, float64_t yStd, float64_t zStd, uint16_t solutionInfo)

• void mvSRW_Writer_AddCameraSettings (mvSRW_Writer *pObj, int64_t time, float64_t
gain, float64_t exposure, float64_t exposureScaled)

• void mvSRW_Writer_AddAttitude (mvSRW_Writer *pObj, mvAttitudeData
*mvAttitudeDataPtr, int32_t numAttitudes)

• void mvSRW_Writer_AddCameraParameters (mvSRW_Writer *pObj, const char *name,
mvCameraConfiguration *config)

• mvSRW_Reader * mvSRW_Reader_Initialize (const char *configDir)

• void mvSRW_Reader_Deinitialize (mvSRW_Reader *pObj)

• int mvSRW_Reader_GetNumberOfCameras (mvSRW_Reader *pObj)

• void mvSRW_Reader_GetCameras (mvSRW_Reader *pObj, mvCameraDescriptor *cameras)

• bool mvSRW_Reader_GetCameraParameters (mvSRW_Reader *pObj, const char *name,
mvCameraConfiguration *camera)

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 38

• mvFrame * mvSRW_Reader_GetNextFrame (mvSRW_Reader *pObj)

• void mvSRW_Reader_ReleaseFrame (mvSRW_Reader *pObj, mvFrame *frame)

• mvIMUData * mvSRW_Reader_GetNextGyro (mvSRW_Reader *pObj, int64_t
maxTimestamp)

• mvIMUData * mvSRW_Reader_GetNextAccel (mvSRW_Reader *pObj, int64_t
maxTimestamp)

• void mvSRW_Reader_ReleaseIMUData (mvSRW_Reader *pObj, mvIMUData *imu)

• mvGPStimeSyncData * mvSRW_Reader_GetNextGPStimeSync (mvSRW_Reader *obj,
int64_t maxTimestamp)

• void mvSRW_Reader_ReleaseGPStimeSyncData (mvSRW_Reader *pObj,
mvGPStimeSyncData *timeSyncData)

• mvGPSvelocityData * mvSRW_Reader_GetNextGPSvelocity (mvSRW_Reader *pObj,
int64_t maxTimestamp)

• void mvSRW_Reader_ReleaseGPSvelocityData (mvSRW_Reader *pObj,
mvGPSvelocityData *velocityData)

• mvAttitudeData * mvSRW_Reader_GetNextAttitude (mvSRW_Reader *pObj, int64_t
maxTimestamp)

• void mvSRW_Reader_ReleaseAttitudeData (mvSRW_Reader *pObj, mvAttitudeData
*attitude)

• mvStereoConfiguration * mvSRW_ReadStereoCalibrationFromXMLFile (const char
*fileName)

• bool mvSRW_WriteStereoCalibrationToXML (const char *filename, mvStereoConfiguration
*stereoConfig)

• bool mvSRW_WriteCameraExtrinsicParameters (const char *filename, const
mvCameraExtrinsicParameters *params)

• bool mvSRW_ReadCameraExtrinsicParameters (const char *filename,
mvCameraExtrinsicParameters *params)

3.18.4 Detailed Description
mvSRW.h

Machine Vision, Sequence Reader Writer (SRW)

3.19 Overview
The SRW feature is for reading and writing data sequences that can be inputs into other MV
features. One work flow might be to capture several cameras and IMU data using mvCapture
which will write out a SRW sequence. That sequence can then be fed into a MV playback tool
(e.g., mvDFSPlayback).

The sequences are saved as a directory structure of files. The directory structure needs to be the
following:

data/

 accelerometer.xml

 attitude.xml

 cameraSettings.xml

 gyroscope.xml

 Configuration.VIO.playback.XML

data/Camera

 frame_00000.pgm

 . . .

 MetaInfo.xml

This directory and the contents is created by the Writer but the xml file describing the data (e.g.,
Configuration.VIO.playback.XML in this case) can be corrupted. It can be created by a user
and placed in the data directory by hand.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39

The example config file looks like the following:

<?xml version='1.0' encoding='utf-8'?>

<Configuration>

 <Offline>

 <Camera folder="./Camera/" framerate="WAIT" loop="false" />

 <Sensor folder="./" loop="false" />

 </Offline>

</Configuration>

3.20 Limitations
The following list are some of the known limitations:

• Writer object must be properly de-initialized for file writing to complete.

• All data except images must fit into application RAM. However, if data is written faster than the
disk write speed then all data including images must fit into memory.

3.20.1 Typedef Documentation

typedef struct mvSRW_Reader mvSRW_Reader

Sequence Reader for IMU and camera data.

typedef struct mvSRW_Writer mvSRW_Writer

Sequence Writer for IMU and camera data.

3.20.2 Function Documentation

bool mvSRW_ReadCameraExtrinsicParameters (const char * filename,
mvCameraExtrinsicParameters * params)

Reads camera extrinsic parameters from XML file.

Parameters:
filename Path to the xml file.

Returns:
Pointer to mvCameraExtrinsicParameters object.

void mvSRW_Reader_Deinitialize (mvSRW_Reader * pObj)
Deinitialize SequenceReader object.

Parameters:
pObj Pointer to SequenceReader object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 40

bool mvSRW_Reader_GetCameraParameters (mvSRW_Reader * pObj,
const char * name, mvCameraConfiguration * camera)

Read camera parameters from file for camera with corresponding name.

Parameters:
pObj Pointer to SequenceReader object.

name Name of camera to use a id.

cameras Pre allocated memory for camera Configuration values.

void mvSRW_Reader_GetCameras (mvSRW_Reader * pObj,
mvCameraDescriptor * cameras)

Get the descriptors of the camera.

Parameters:
pObj Pointer to SequenceReader object.

cameras Pre allocated memory for camera descriptors of available cameras.

mvIMUData* mvSRW_Reader_GetNextAccel (mvSRW_Reader * pObj,
int64_t maxTimestamp)

Returns the next accelerometer reading.

Parameters:
pObj Pointer to SequenceReader object.

maxTimestamp Read accelerometer readings up to but not exceeding given timestamp.

Returns:
IMU data object that must be released after use.

mvAttitudeData* mvSRW_Reader_GetNextAttitude (mvSRW_Reader *
pObj, int64_t maxTimestamp)

Returns the next attitude reading.

Parameters:
pObj Pointer to SequenceReader object.

maxTimestamp Read attitude readings up to but not exceeding given timestamp.

Returns:
Attitude data object that must be released after use.

mvFrame* mvSRW_Reader_GetNextFrame (mvSRW_Reader * pObj)

Reads and returns the next frame (image + time) [1 image for monocular and 2 images for
stereo].

Parameters:
pObj Pointer to SequenceReader object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41

Returns:
Newly allocated frame object that must be released after use.

mvGPStimeSyncData* mvSRW_Reader_GetNextGPStimeSync
(mvSRW_Reader * obj, int64_t maxTimestamp)

Returns the next gyro reading.

Parameters:
obj Pointer to SequenceReader object.

maxTimestamp Read GPS time sync readings up to but not exceeding given timestamp.

Returns:
GPS time sync data object that must be released after use.

mvGPSvelocityData* mvSRW_Reader_GetNextGPSvelocity
(mvSRW_Reader * pObj, int64_t maxTimestamp)

Returns the next gyro reading.

Parameters:
pObj Pointer to SequenceReader object.

maxTimestamp Read GPS time sync readings up to but not exceeding given timestamp.

Returns:
GPS time sync data object that must be released after use.

mvIMUData* mvSRW_Reader_GetNextGyro (mvSRW_Reader * pObj,
int64_t maxTimestamp)

Returns the next gyro reading.

Parameters:
pObj Pointer to SequenceReader object.

maxTimestamp Read gyro readings up to but not exceeding given timestamp.

Returns:
IMU data object that must be released after use.

int mvSRW_Reader_GetNumberOfCameras (mvSRW_Reader * pObj)
Get Number of Camera that the Reader found in Configuration (can be stereo and mono).

Parameters:
pObj Pointer to SequenceReader object.

Returns:
Number of cameras.

mvSRW_Reader* mvSRW_Reader_Initialize (const char * configDir)

Initialize SequenceReader object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42

Parameters:
folderPath Location on storage where to save the sequence files.

width Pixel Width of camera images.

height Pixel Height of camera images.

Returns:
Pointer to SequenceWriter object; returns NULL if failed.

void mvSRW_Reader_ReleaseAttitudeData (mvSRW_Reader * pObj,
mvAttitudeData * attitude)

Release IMU data memory after use.

Parameters:
pObj Pointer to SequenceReader object.

void mvSRW_Reader_ReleaseFrame (mvSRW_Reader * pObj, mvFrame
* frame)

Release frame data memory after use.

Parameters:
pObj Pointer to SequenceReader object.

void mvSRW_Reader_ReleaseGPStimeSyncData (mvSRW_Reader *
pObj, mvGPStimeSyncData * timeSyncData)

Release GPS time sync data memory after use.

Parameters:
pObj Pointer to SequenceReader object.

void mvSRW_Reader_ReleaseGPSvelocityData (mvSRW_Reader * pObj,
mvGPSvelocityData * velocityData)

Release GPS velocity data memory after use.

Parameters:
pObj Pointer to SequenceReader object.

void mvSRW_Reader_ReleaseIMUData (mvSRW_Reader * pObj,
mvIMUData * imu)

Release IMU data memory after use.

Parameters:
pObj Pointer to SequenceReader object.

mvStereoConfiguration* mvSRW_ReadStereoCalibrationFromXMLFile
(const char * fileName)

Reads MV standard XML Stereo Calibration file.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 43

Parameters:
filename Path to the calibration xml file.

Returns:
Pointer to mvStereoConfiguration object. Caller is responsible for deallocation using delete
if XML file is ill formed the function returns null.

bool mvSRW_WriteCameraExtrinsicParameters (const char * filename,
const mvCameraExtrinsicParameters * params)

Writes camera extrinsic parameters to XML file.

Parameters:
filename Path to the xml file.

Returns:
Pointer to mvCameraExtrinsicParameters object.

void mvSRW_Writer_AddAccel (mvSRW_Writer * pObj, int64_t time,
float64_t x, float64_t y, float64_t z)

Pass Accelerometer data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of accelerometer data.

x Accelerometer data for X axis.

y Accelerometer data for Y axis.

z Accelerometer data for Z axis.

void mvSRW_Writer_AddAttitude (mvSRW_Writer * pObj,
mvAttitudeData * mvAttitudeDataPtr, int32_t numAttitudes)

Pass Attitude data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Pointer to the mvAttitudeData array.

numAttitudes Size for the above array.

void mvSRW_Writer_AddCameraParameters (mvSRW_Writer * pObj,
const char * name, mvCameraConfiguration * config)

Write file with name <name>.cal with camera parameters.

Parameters:
pObj Pointer to SequenceWriter object.

name Camera name, used for filename and should be same as in initialization.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44

config Camera parameters to be written.

void mvSRW_Writer_AddCameraSettings (mvSRW_Writer * pObj,
int64_t time, float64_t gain, float64_t exposure, float64_t
exposureScaled)

Pass CameraSettings data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of CameraSettings data.

gain Gain settings applied to the camera.

exposure Exposure time applied to the camera.

void mvSRW_Writer_AddGpsTimeSync (mvSRW_Writer * pObj, int64_t
time, int64_t bias, int64_t drift, int64_t GPStimeUncertaintyStd)

Pass GPS time sync data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of data in system time in nanoseconds.

bias Time bias/offset (time bias/offset = GPS time - system time) in

nanoseconds.

drift Drift of system time w.r.t. GPS time (not currently used).

GPStimeUncertaintyStd GPS time estimation uncertainty (set to -1 if not available).

void mvSRW_Writer_AddGpsVelocity (mvSRW_Writer * pObj, int64_t
time, float64_t x, float64_t y, float64_t z, float64_t xStd, float64_t yStd,
float64_t zStd, uint16_t solutionInfo)

Pass GPS velocity data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of data in GPS time in nanoseconds.

x GPS velocity in East direction in m/s.

y GPS velocity in North direction in m/s.

z GPS velocity in Up direction in m/s.

xStd Standard deviation of velocity uncertainty in East in m/s.

yStd Standard deviation of velocity uncertainty in North in m/s.

zStd Standard deviation of velocity uncertainty in Up in m/s.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 45

solutionInfo Fix type/quality: the last 3 bits being '100' represents a good message

(if available, otherwise set to 4).

void mvSRW_Writer_AddGyro (mvSRW_Writer * pObj, int64_t time,
float64_t x, float64_t y, float64_t z)

Pass Gyroscope data to the SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of Gyro data.

x Gyro data for X axis.

y Gyro data for Y axis.

z Gyro data for Z axis.

void mvSRW_Writer_AddImage (mvSRW_Writer * pObj, int64_t time,
const uint8_t * pxls)

Pass camera frame to the MV SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of camera frame.

pxls Pointer to camera frame data.

void mvSRW_Writer_AddStereoImage (mvSRW_Writer * pObj, int64_t
time, const uint8_t * pxlsL, const uint8_t * pxlsR)

Pass stereo camera frame to the MV SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

time Timestamp of camera frame.

pxlsL Pointer to left camera frame data.

pxlsR Pointer to right camera frame data.

void mvSRW_Writer_Deinitialize (mvSRW_Writer * pObj)

Deinitialize SequenceWriter object.

Parameters:
pObj Pointer to SequenceWriter object.

mvSRW_Writer* mvSRW_Writer_Initialize (const char * folderPath,
mvMonoCameraInit * monoCam, mvStereoCameraInit * stereoCam)

Initialize SequenceWriter object.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 46

Parameters:
folderPath Location on storage where to save the sequence files.

monoCam Pointer to monocular camera object.

stereoCam Pointer to stereo camera object.

Returns:
Pointer to SequenceWriter object; returns NULL if failed.

bool mvSRW_WriteStereoCalibrationToXML (const char * filename,
mvStereoConfiguration * stereoConfig)

Writes Stereo configuration into MV standard XML format.

Parameters:
filename Path to filename.

stereoConfig Stereo configuration to writer.

Returns:
true on success false otherwise.

3.21 mvVISLAM.h File Reference
#include <mv.h>

3.21.1 Classes
• struct mvVISLAMPose

• struct mvVISLAMMapPoint

3.21.2 Typedefs
• typedef class mvVISLAM mvVISLAM

3.21.3 Functions
• mvVISLAM * mvVISLAM_Initialize (const mvCameraConfiguration *camera, const

float32_t readoutTime, const float32_t *tbc, const float32_t *ombc, const float32_t delta, const
float32_t *std0Tbc, const float32_t *std0Ombc, const float32_t std0Delta, const float32_t
accelMeasRange, const float32_t gyroMeasRange, const float32_t stdAccelMeasNoise, const
float32_t stdGyroMeasNoise, const float32_t stdCamNoise, const float32_t minStdPixelNoise,
const float32_t failHighPixelNoiseScaleFactor, const float32_t logDepthBootstrap, const bool
useLogCameraHeight, const float32_t logCameraHeightBootstrap, const bool noInitWhenMoving,
const float32_t limitedIMUbWtrigger, const char *staticMaskFileName, const float32_t
gpsImuTimeAlignment, const float32_t *tba)

• void mvVISLAM_Deinitialize (mvVISLAM *pObj)

• void mvVISLAM_AddImage (mvVISLAM *pObj, int64_t time, const uint8_t *pxls)

• void mvVISLAM_AddAccel (mvVISLAM *pObj, int64_t time, float64_t x, float64_t y,
float64_t z)

• void mvVISLAM_AddGyro (mvVISLAM *pObj, int64_t time, float64_t x, float64_t y,
float64_t z)

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47

• void mvVISLAM_AddGPSvelocity (mvVISLAM *pObj, int64_t time, float64_t velocityEast,
float64_t velocityNorth, float64_t velocityUP, float64_t measCovVelocity[3][3], uint16_t
solutionInfo)

• void mvVISLAM_AddGPStimeSync (mvVISLAM *pObj, int64_t time, int64_t bias, int64_t
gpsTimeStdDev)

• const mvVISLAMPose mvVISLAM_GetPose (mvVISLAM *pObj)

• int mvVISLAM_HasUpdatedPointCloud (mvVISLAM *pObj)

• int mvVISLAM_GetPointCloud (mvVISLAM *pObj, mvVISLAMMapPoint *pPoints,
uint32_t maxPoints)

• void mvVISLAM_Reset (mvVISLAM *pObj, bool resetPose)

3.21.4 Detailed Description
mvVISLAM.h

Machine Vision, Visual-Inertial Simultaneous Fusion Localization And Mapping (VISLAM)

3.22 Overview
VISLAM provides 6-DOF localization and pose estimation for various applications. It has been
tuned for robot use cases in particular.

In addition to the initialization parameters, there are other things to consider when attempting
to get the best possible performance out of VISLAM. A good camera calibration performed
specifically for a given camera has the potential to significantly reduce the overall odometry
drift rather than the default calibration provided in examples.

Furthermore, rich motion just after VISLAM starts can accelerate the state space convergence
and lead to lower drift. For the drone application, rolling/pitching and high linear accelerations
are good types of motion for better convergence.

3.23 Limitations
The following list are some of the known limitations:

• The state may drift before takeoff if the IMU cutoff frequency is set to below the frequency of
vibration sources on the board (fan, propellers).

• Landing in a scenario where the closest features are far away may not sufficiently constrain the
position estimate, causing the drone to drift on the ground if GPS velocity estimates are not
provided

• Flying over water violates the assumption of feature stationary; system will reset if GPS velocity
estimates are not provided

• Flying at high altitudes drives up velocity uncertainty which can cause problems if all points (for
which depth has converged) are lost after excessive yawing and GPS velocity estimates are not
available.

3.23.1 Typedef Documentation

typedef class mvVISLAM mvVISLAM

Visual-Inertial Simultaneous Fusion Localization and Mapping (VISLAM)

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48

3.23.2 Function Documentation

void mvVISLAM_AddAccel (mvVISLAM * pObj, int64_t time, float64_t x,
float64_t y, float64_t z)

Pass Accelerometer data to the VISLAM object.

Parameters:
pObj Pointer to VISLAM object.

time Timestamp of data in nanoseconds in system time.

x Accelerometer data for X axis in m/s^2.

y Accelerometer data for Y axis in m/s^2.

z Accelerometer data for Z axis in m/s^2.

void mvVISLAM_AddGPStimeSync (mvVISLAM * pObj, int64_t time,
int64_t bias, int64_t gpsTimeStdDev)

Pass GPS time bias data to the VISLAM object.

Parameters:
pObj Pointer to VISLAM object.

time Timestamp of data in system time in nanoseconds.

bias Time bias/offset (time bias/offset = GPS time - system time) in

nanoseconds.

gpsTimeStdDev GPS time uncertainty (if available, otherwise set to -1).

void mvVISLAM_AddGPSvelocity (mvVISLAM * pObj, int64_t time,
float64_t velocityEast, float64_t velocityNorth, float64_t velocityUP,
float64_t measCovVelocity[3][3], uint16_t solutionInfo)

Pass GPS velocity data to the VISLAM object

Parameters:
pObj Pointer to VISLAM object

time Timestamp of data in GPS time in nanoseconds

velocityEast GPS velocity data in East direction in m/s.

velocityNorth GPS velocity data in North direction in m/s.

velocityUP GPS velocity data in Up direction in m/s.

measCovVelocity GPS velocity measurement error co-variance, fields in (m/s)^2.

solutionInfo Fix type/quality: the last 3 bits being '100' represents a good message

(if available, otherwise set to 4).

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49

void mvVISLAM_AddGyro (mvVISLAM * pObj, int64_t time, float64_t x,
float64_t y, float64_t z)

Pass Gyroscope data to the VISLAM object.

Parameters:
pObj Pointer to VISLAM object.

time Timestamp of data in nanoseconds in system time.

x Gyro data for X axis in rad/s.

y Gyro data for Y axis in rad/s.

z Gyro data for Z axis in rad/s.

void mvVISLAM_AddImage (mvVISLAM * pObj, int64_t time, const
uint8_t * pxls)

Add the camera frame to the VISLAM object and trigger processing (a frame update) on
the newly added image while utilizing any already added IMU samples, including
timestamps occurring after the image, to fully propagate the pose forward to the most recent
IMU sample.

NOTE: All other sensor data occurring before this image must be added first before calling
this function otherwise that older data will be dropped at the next call of this function.

Parameters:
pObj Pointer to VISLAM object.

time Timestamp of camera frame in nanoseconds in system time. Time must

be center of exposure time, not start of frame or end of frame.

pxls Pointer to camera frame 8-bit grayscale luminance data (VGA).

void mvVISLAM_Deinitialize (mvVISLAM * pObj)

Deinitialize VISLAM object.

Parameters:
pObj Pointer to VISLAM object.

int mvVISLAM_GetPointCloud (mvVISLAM * pObj, mvVISLAMMapPoint *
pPoints, uint32_t maxPoints)

Grab point cloud.

Parameters:
pObj Pointer to VISLAM object.

pPoints Pre-allocated array of mvVISLAMMapPoint structure to be filled in

by VISLAM with current map points.

maxPoints Max number of points requested. Should match allocated size of

pPoints.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50

Returns:
Number of points filled into the pPoints array.

const mvVISLAMPose mvVISLAM_GetPose (mvVISLAM * pObj)

Grab last computed pose.

Parameters:
pObj Pointer to VISLAM object.

Returns:
Computed pose from previous frame and IMU data.

int mvVISLAM_HasUpdatedPointCloud (mvVISLAM * pObj)

Inquire if VISLAM has new map points.

Parameters:
pObj Pointer to VISLAM object.

Returns:
Number of map points currently being observed and estimated.

mvVISLAM* mvVISLAM_Initialize (const mvCameraConfiguration *
camera, const float32_t readoutTime, const float32_t * tbc, const
float32_t * ombc, const float32_t delta, const float32_t * std0Tbc, const
float32_t * std0Ombc, const float32_t std0Delta, const float32_t
accelMeasRange, const float32_t gyroMeasRange, const float32_t
stdAccelMeasNoise, const float32_t stdGyroMeasNoise, const float32_t
stdCamNoise, const float32_t minStdPixelNoise, const float32_t
failHighPixelNoiseScaleFactor, const float32_t logDepthBootstrap,
const bool useLogCameraHeight, const float32_t
logCameraHeightBootstrap, const bool noInitWhenMoving, const
float32_t limitedIMUbWtrigger, const char * staticMaskFileName, const
float32_t gpsImuTimeAlignment, const float32_t * tba)

Initialize VISLAM object. A few parameters may significantly impact the performance of
the VISLAM algorithm. Some parameters affect the initial convergence of VISLAM,
which impacts the overall drift in the estimated pose. The following parameters should have
particular attention paid to them: logDepthBootstrap, useLogCameraHeight,
logCameraHeightBootstrap, and limitedIMUbWtrigger.

Parameters:
camera Pointer to camera intrinsic calibration parameters.

readoutTime Frame readout time (seconds). n times row readout time.

Set to 0 for global shutter camera. Frame readout time

should be (close to) but smaller than the rolling shutter

camera frame period.

tbc Pointer to accelerometer-camera translation

misalignment vector (meters). T_{bc} is the translation

of the origin of the camera (c) frame relative to that of

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51

the body (b) or accelerometer frame in the body frame.

T_{bc} setting can be verified by checking estimated

T_{bc}.

ombc Pointer to accelerometer-camera misalignment vector

(radians). {bc} is the corresponding rotation in

exponential coordinates. Can be used together with

T_{bc} to rotate vector in camera frame x_c to IMU

frame x_imu via [R|T]x_c = x_imu. {bc} settings can be

verified by checking estimated R_{bc} mapped to

exponential coordinates.

delta Camera-inertial timestamp misalignment (seconds).

Ideally this is within about 1 ms of the true value. Delta

can be verified by checking the estimated time

alignment.

std0Tbc Pointer to initial uncertainty in accelerometer-camera

translation vector (meters).

std0Ombc Pointer to initial uncertainty in accelerometer-camera

orientation vector (rad.).

std0Delta Initial uncertainty in time misalignment estimate

(seconds).

accelMeasRange Accelerometer sensor measurement range (m/s^2).

gyroMeasRange Gyro sensor measurement range (rad./s).

stdAccelMeasNoise Standard deviation of accelerometer measurement noise

(m/s^2).

stdGyroMeasNoise Standard deviation of gyro measurement noise (rad./s).

stdCamNoise Standard dev of camera noise per pixel.

minStdPixelNoise Minimum of standard deviation of feature measurement

noise in pixels.

failHighPixelNoiseScaleFactor Scales measurement noise and compares against search

area (is search area large enough to reliably compute

measurement noise covariance matrix).

logDepthBootstrap Initial point depth [log(meters)], where log is the natural

log. By default, initial depth is set to 1m. However, if

e.g. a downward facing camera on a drone is used and it

can be assumed that feature depth at initialization is

always e.g. 4cm, then we can set this parameter to 4cm

(or -3.2). This will improve tracking during takeoff,

accelerate state space convergence, and lead to more

accurate and robust pose estimates.

useLogCameraHeight Use logCameraHeightBootstrap instead of

logDepthBootstrap.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 52

logCameraHeightBootstrap Initializes point depth based on known geometry,

assumes (1) camera pointing partially at ground plane

and (2) board/IMU aligned with gravity at start (=

accelerometer measures roughly [0, 0, -9.8] in units of

m/s^2), required input is camera height over ground

(log(meters)), log is natural log. Understanding when to

use logDepthBootstrap versus

logCameraHeightBootstrap and how to set these values

appropriately can improve the initialization of VISLAM

and has the potential to reduce the amount of odometry

drift observed.

noInitWhenMoving Set if device is stationary w.r.t. surface when initializing

(e.g. drone) based on camera, not on IMU: supports

device on moving surface.

limitedIMUbWtrigger To prevent tracking failure during/right after (hard)

landing: If sum of 3 consecutive accelerometer samples

in any dimension divided by 4.3 exceed this threshold,

IMU measurement noise is increased (and resets become

more likely);

NOTE: if platform vibrates heavily during flight, this

may trigger mid- flight; if poseQuality in

mvVISLAMPose drops to

MV_TRACKING_STATE_LOW_QUALITY during

flight, improve mechanical dampening (and/or increase

threshold)

 RECOMMEND: 150m/s^2 / 4.3 ~= 35

staticMaskFileName 1/4 resolution image (w.r.t. VGA), 160x120, PGM

format, the part of the camera view for which pixels are

set to 255 is blocked from feature detection useful, e.g.,

to avoid detecting & tracking points on landing gear

reaching into camera view.

gpsImuTimeAlignment GPS-inertial timestamp misalignment (seconds),

negative if GPS time stamping is delayed relative to

IMU time stamping, ideally this is within about 1 ms of

the true value.

tba Pointer to accelerometer-GPS antenna translation

misalignment vector/lever arm (meters). T_{ba} is the

translation of the origin of the GPS antenna (a) frame

relative to that of the body (b) or accelerometer frame in

the body frame.

Returns:
Pointer to VISLAM object; returns NULL if failed.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53

void mvVISLAM_Reset (mvVISLAM * pObj, bool resetPose)
Resets the EKF from an external source. EKF will try to reinitialize in the subsequent
camera frame. To properly initialize after reset, device should not be rotating, moving a lot,
camera look at 10+ features.

Parameters:
pObj Pointer to VISLAM object.

resetPose false: initializes with last good pose after triggering reset true:

initializes with "zero" pose after triggering reset

3.24 mvVM.h File Reference
#include <mv.h>
#include <string.h>

3.24.1 Classes
• struct mvVM_IntegrationConfiguration

• struct mvVM_CollisionInfo

3.24.2 Typedefs
• typedef struct mvVM mvVM

3.24.3 Functions
• mvVM * mvVM_Initialize (const float32_t sampleDistance[3])

• void mvVM_Deinitialize (mvVM *map)

• void mvVM_GetSampleDistance (mvVM *map, float32_t sampleDistance[3])

• void mvVM_MoveOriginTo (mvVM *map, float32_t origin[3])

• void mvVM_Clear (mvVM *map)

• void mvVM_IntegrateDepthMap (mvVM *map, const float32_t *data, const
mvCameraConfiguration *camera, const mvPose6DRT *registration, const
mvVM_IntegrationConfiguration *config)

• void mvVM_IntegrateDepthMapUInt16 (mvVM *map, const uint16_t *data, const
mvCameraConfiguration *camera, const mvPose6DRT *registration, const
mvVM_IntegrationConfiguration *config)

• MV_COLLISION mvVM_CheckCollisionWithPoint (const mvVM *map, const float32_t
A[3], const float32_t threshold, mvVM_CollisionInfo *info)

• MV_COLLISION mvVM_CheckCollisionWithBox (const mvVM *map, const float32_t
lower[3], const float32_t upper[3], const float32_t threshold, mvVM_CollisionInfo *info)

• MV_COLLISION mvVM_CheckCollisionWithLine (const mvVM *map, const float32_t A[3],
const float32_t B[3], const float32_t threshold, mvVM_CollisionInfo *info)

• MV_COLLISION mvVM_GetMinimalDistanceToPoint (const mvVM *map, const float32_t
A[3], const float32_t maximalDistance, const float32_t threshold, float32_t *distance,
mvVM_CollisionInfo *info)

• MV_COLLISION mvVM_GetMinimalDistanceToBox (const mvVM *map, const float32_t
lower[3], const float32_t upper[3], const float32_t maximalDistance, const float32_t threshold,
float32_t *distance, mvVM_CollisionInfo *info)

• void mvVM_ClipAgainstBox (mvVM *map, const float32_t lower[3], const float32_t upper[3])

• void mvVM_ClipAgainstSphere (mvVM *map, const float32_t center[3], const float32_t radius)

• void mvVM_SetBoxFree (mvVM *map, const float32_t lower[3], const float32_t upper[3])

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54

• void mvVM_SetBoxOccupied (mvVM *map, const float32_t lower[3], const float32_t upper[3])

• void mvVM_ExtractSamplePoints (const mvVM *map, const float32_t threshold, float32_t
*points, size_t *numberPoints)

• void mvVM_ExtractSurfacePoints (const mvVM *map, const float32_t threshold, float32_t
*vertices, size_t *numberVertices)

• void mvVM_ExtractSurfaceMesh (const mvVM *map, const float32_t threshold, float32_t
*vertices, size_t *numberVertices, uint32_t *indices, size_t *numberIndices)

3.24.4 Detailed Description
mvVM.h

Machine Vision SDK, Voxel Map (VM)

3.24.5 Typedef Documentation

typedef struct mvVM mvVM

Voxel Mapping (VM)

3.24.6 Function Documentation

MV_COLLISION mvVM_CheckCollisionWithBox (const mvVM * map,
const float32_t lower[3], const float32_t upper[3], const float32_t
threshold, mvVM_CollisionInfo * info)

Checks if an axis aligned box in space hits the map

Parameters:
map VM object.

lower Lower corner of the box.

upper Upper corner of the box.

threshold Map threshold value to tread a sample in the map as

occupied.

info Optional structure to return the sample point that collided and

more information. If info == NULL, then it is ignored.

Returns:
MV_COLLISION value describing the result as no collision, collision, or unknown.

MV_COLLISION mvVM_CheckCollisionWithLine (const mvVM * map,
const float32_t A[3], const float32_t B[3], const float32_t threshold,
mvVM_CollisionInfo * info)

Checks if a line in space hits the map.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55

Parameters:
map VM object.

A Start point of the line.

B End point of the line.

threshold Map threshold value to tread a sample in the map as

occupied.

info Optional structure to return the sample point that collided and

more information. If info == NULL, then it is ignored.

Returns:
MV_COLLISION value describing the result as no collision, collision, or unknown.

MV_COLLISION mvVM_CheckCollisionWithPoint (const mvVM * map,
const float32_t A[3], const float32_t threshold, mvVM_CollisionInfo *
info)

Checks if a point in space is occupied.

Parameters:
map VM object.

A Location of the point in 3D space in the world coordinate

frame.

threshold Map threshold value to tread a sample in the map as

occupied.

info Optional structure to return the sample point that collided and

more information. If info == NULL, then it is ignored.

Returns:
MV_COLLISION value describing the result as no collision, collision, or unknown.

void mvVM_Clear (mvVM * map)

Clears the data in the map

Parameters:
map VM object

void mvVM_ClipAgainstBox (mvVM * map, const float32_t lower[3],
const float32_t upper[3])

Clips the map against a given axis aligned box. All data within the map outside of the box
is deleted. Some fringe around the box can remain.

Parameters:
map VM object.

lower Lower corner of the box.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56

upper Upper corner of the box.

void mvVM_ClipAgainstSphere (mvVM * map, const float32_t center[3],
const float32_t radius)

Clips the map against a given sphere. All data within the map outside of the sphere is
deleted. Some fringe around the sphere can remain.

Parameters:
map VM object.

center Center of the sphere.

radius Radius of the sphere.

void mvVM_Deinitialize (mvVM * map)

Deinitialize VM object

Parameters:
map VM object.

void mvVM_ExtractSamplePoints (const mvVM * map, const float32_t
threshold, float32_t * points, size_t * numberPoints)

Extracts the occupied sample locations in the volume grid that have non-empty values. This
can be used to create a representation of the occupied blocks - not the estimated surface.

Parameters:
map VM object.

points Pointer to a buffer of floats in {x0,y0,z0}, {x1,y1,z1}, ... format. Use

NULL if wanting numberPoints first: size_t numberVertices = 0;

mvVM_ExtractSamplePoints(map, 0, NULL, &numberVertices);

numberPoints Pointer to size value of the number of points written to the buffer.

void mvVM_ExtractSurfaceMesh (const mvVM * map, const float32_t
threshold, float32_t * vertices, size_t * numberVertices, uint32_t *
indices, size_t * numberIndices)

Extracts a surface mesh.

Parameters:
map VM object.

vertices Pointer to a buffer of floats in {x0,y0,z0}, {x1,y1,z1}, ... format.

numberVertices Pointer to size value of the number of points written to the buffer.

indices Pointer to a buffer of triangle vertex indices of the mesh.

numberIndices Pointer to size value of the number of indices written to the buffer.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57

void mvVM_ExtractSurfacePoints (const mvVM * map, const float32_t
threshold, float32_t * vertices, size_t * numberVertices)

Extracts the vertex locations on the surface.

Parameters:
map VM object.

vertices Pointer to a buffer of floats in {x0,y0,z0}, {x1,y1,z1}, ... format. Use

NULL if wanting numberPoints first: size_t numberVertices = 0;

mvVM_ExtractSurfacePoints(map, 0, NULL, &numberVertices);

numberVertices Pointer to size value of the number of points written to the buffer.

MV_COLLISION mvVM_GetMinimalDistanceToBox (const mvVM * map,
const float32_t lower[3], const float32_t upper[3], const float32_t
maximalDistance, const float32_t threshold, float32_t * distance,
mvVM_CollisionInfo * info)

Returns the closest hit point on the map and the distance to a given axis aligned box. The
returned point does not need to be the unique solution, there might be more points with the
same distance.

Parameters:
map VM object.

lower Lower corner of the box.

upper Upper corner of the box.

maximalDistance Maximal distance to search for.

threshold Map threshold value to tread a sample in the map as occupied.

distance Pointer to return the distance found.

minimalPoint Map sample location that was found to be closest.

MV_COLLISION mvVM_GetMinimalDistanceToPoint (const mvVM *
map, const float32_t A[3], const float32_t maximalDistance, const
float32_t threshold, float32_t * distance, mvVM_CollisionInfo * info)

Returns the closest hit point on the map and the distance to a given point. The returned
point does not need to be the unique solution, there might be more points with the same
distance.

Parameters:
map VM object.

A Point in space.

maximalDistance Maximal distance to search for.

threshold Map threshold value to tread a sample in the map as occupied.

distance Pointer to return the distance found.

minimalPoint Map sample location that was found to be closest.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58

void mvVM_GetSampleDistance (mvVM * map, float32_t
sampleDistance[3])

Get the sample distances in meters for the map.

Parameters:
map VM object.

sampleDistance Contains the sample distances in meters along X, Y and Z

axis.

mvVM* mvVM_Initialize (const float32_t sampleDistance[3])

Initialize a Voxel Map object.

Parameters:
sampleDistance Distances in meters between samples along X, Y, and Z axis.

Returns:
On success pointer to VM object, NULL pointer on failure.

void mvVM_IntegrateDepthMap (mvVM * map, const float32_t * data,
const mvCameraConfiguration * camera, const mvPose6DRT *
registration, const mvVM_IntegrationConfiguration * config)

Integrates a new depth map into the map.

NOTE: Updates the volume map by integrating the depth map.

Parameters:
map VM object.

data Pointer to the raw depth map image data. The values are interpreted as

depth measurements in the same units as the sample distances.

camera Pointer to a camera calibration object. Non-linear distortion parameters

are not supported, a linear camera model is assumed.

registration Pointer to a pose object, storing the transformation from world

coordinate system to camera coordinate system.

noiseModel Single parameter noise model for the depth map, here the "ramp"

around the measured depth values.

filterModel Single parameter filter model for the map, here the maximal weight of

the running average filter.

void mvVM_IntegrateDepthMapUInt16 (mvVM * map, const uint16_t *
data, const mvCameraConfiguration * camera, const mvPose6DRT *
registration, const mvVM_IntegrationConfiguration * config)

Integrates a new depth map into the map.

NOTE: Updates the volume map by integrating the depth map.

Machine Vision Application Programming Interface

80-H9220-2 Rev. B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59

Parameters:
map VM object.

data Pointer to the raw depth map image data. The values are interpreted as

depth measurements in the same units as the sample distances.

camera Pointer to a camera calibration object. Non-linear distortion parameters

are not supported, a linear camera model is assumed.

registration Pointer to a pose object, storing the transformation from world

coordinate system to camera coordinate system.

config Pointer to integration configuration data.

void mvVM_MoveOriginTo (mvVM * map, float32_t origin[3])

Moves the origin of the map to a new origin.

Parameters:
map VM object.

origin New origin in meters and current world coordinates. The

value origin is changed to reflect the actual new origin which

may differ from the provided one, due to quantization of the

map samples.

void mvVM_SetBoxFree (mvVM * map, const float32_t lower[3], const
float32_t upper[3])

Sets samples in the volume covered by a box to free.

Parameters:
map VM object.

lower Lower corner of the box.

upper Upper corner of the box.

void mvVM_SetBoxOccupied (mvVM * map, const float32_t lower[3],
const float32_t upper[3])

Sets samples in the volume covered by a box to be occupied.

Parameters:
map VM object.

lower Lower corner of the box.

upper Upper corner of the box.

