Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>July 2017</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 4
 1.1 Scope.. 4
 1.2 References ... 4

2 Overview of IBIS models ... 5
 2.1 Create an IBIS model .. 8
 2.2 Overview of IBIS file .. 9
 2.2.1 Measurement conditions of IBIS models .. 9
 2.2.2 View an IBIS file ... 10
 2.3 IBIS naming convention ... 10
 2.3.1 Types of I/O drivers/receivers ... 12
 2.3.2 Drive strength ... 12
 2.3.3 Operating voltage ... 12
 2.3.4 Drive setting ... 12

A References ... 13
 A.1 Acronyms and terms ... 13

Figures

Figure 1 Input model .. 6
Figure 2 Output model ... 7
Figure 3 I/O model .. 8

Tables

Table 1 IBIS naming – sample 1 .. 10
Table 2 IBIS naming – sample 2 .. 11
Table 3 IBIS naming – sample 3 .. 11
Table 4 I/O drivers and receivers .. 12
Table 5 Drive strength examples .. 12
1 Introduction

NOTE: This document provides a description of chipset capabilities. Not all features are available, nor are all features supported in the software. Enabling some features may require additional licensing fees.

An Input/Output Buffer Information Specification (IBIS) file contains the data required to model the input, output, and input/output buffers of a component. The data in an IBIS file helps to build a buffer model used in signal integrity (SI) simulations of high-speed boards and systems. This document provides the overview of IBIS models released by Qualcomm Technologies, Inc (QTI).

Designers often simulate their printed circuit boards (PCBs) before they have devices to test. The IBIS models allow designers to simulate the I/O behavior and analyze the various components on their board using the IBIS files.

1.1 Scope

Hardware design engineers and developers responsible for performing the time measurements and SI tests can refer to this document for information that is required to enable an accurate design, using a simulation.

IBIS models are generated from the Simulation Program with Integrated Circuit Emphasis (SPICE) simulations and are compared with the silicon data to model the real device as closely as possible.

This document gives guidance when selecting the correct IBIS model to simulate and analyze the I/O device.

1.2 References

For more details related to IBIS, see the following links:

- IBIS specifications: https://ibis.org/specs/
- IBIS modeling cookbook: https://ibis.org/cookbook/
2 Overview of IBIS models

IBIS is a standard for describing the analog behavior of the buffers of digital devices using plain American Standard Code for Information Interchange (ASCII) text formatted data. IBIS files are not models, but they contain the data required to model the input, output, and I/O buffers of a component.

The advantages of IBIS over SPICE are the following:

- It has faster simulation time.
- It does not contain any confidential circuit design or process information.

This buffer model describes the I/O characteristics of a device through current/voltage (I/V) and voltage/time (V/T) data.

For example, an IBIS file of a device contains the electrical characteristics of all the unique pins of that device.

The IBIS format provides the minimum, typical, and maximum corner data within each individual model.

The IBIS file also contains the package resistance, inductance, and capacitance (R, L, and C) data for each pin.

The following are the three types of IBIS models:

- Input
- Output
- I/O

Input

An input model functions as a receiver. The input pin structure of a digital device is a combination of the following circuits and elements:

- A circuit that is activated if the input voltage is over V_{DD} or logic high (power clamp)
- A circuit that is activated if the input voltage is below ground or logic low (ground clamp)
- A circuit that is activated if the input is within V_{DD} and ground (active circuit)
- Resistance, inductance, and capacitance of the package (R, L, and C respectively)

Figure 1 shows the input model of an IBIS file.
Output

An output model functions as a driver. The output pin is a combination of the following elements and circuits:

- A pull-up circuit that is activated when the output voltage is high
- A pull-down circuit that is activated when the output voltage is low
- Die capacitance of the output pin
- R, L, and C of the package

Figure 2 shows the output model of an IBIS file.
Input/Output (I/O)

In the I/O model, the pin is connected to device cells, and it can function either as a driver or a receiver based on the enabling logic.

NOTE: This model sources and/or sinks current and thus cannot be disabled.
Figure 3 shows the I/O model of an IBIS file.

2.1 Create an IBIS model

IBIS files are created by simulation or from bench measurements.

To generate an IBIS model, use these steps:

1. Perform the following premodeling steps:
 a. Obtain the packaging information.
 b. Determine the voltage and temperature tolerances over which the integrated circuit (IC) is specified to operate.

2. Obtain the details related to the following:
 a. I/V curves.
 b. Rise/fall times for output or I/O buffers.

This data is obtained either by direct measurement or by simulation.
2.2 Overview of IBIS file

QTI uses internal tools to generate IBIS models with the following versions:

- IBIS 4.2: Used for signal integrity analysis
- IBIS 5.0: Used for power aware signal integrity analysis
- IBIS Algorithmic Modeling Information (AMI) models: These are special models intended for signal integrity of high-speed SerDes. These algorithmic models allow simulation with various SerDes features such as equalizer, pre-emphasis, de-emphasis, jitter parameter, and so on.

The following are the major sections of an IBIS file:

- The header provides the details related to the IBIS version, file name, and file revision.
- Component details contain the pin information of the device, which includes pin lists, package information, and pin-to-buffer mapping.
- V-I behavioral models contain the data that is required to recreate I-V curves and V-t transition waveforms, which describe the switching properties of a particular buffer.
- Model selector contains the details related to the various simulation models available for a particular buffer. Model selector is used to select different I/O operating modes.

Some of the options available in model selectors include the following:

- Drive strength
- Slew rate
- Voltage mode

2.2.1 Measurement conditions of IBIS models

IBIS models are generated for the following corner conditions:

- Typical
 - Nominal voltage supply
 - Nominal temperature
 - Nominal process parameters
- Minimum
 - Lowest voltage supply
 - High temperature
 - Weak process parameters
- Maximum
 - Highest voltage supply
 - Low temperature
 - Strong process parameters
2.2.2 View an IBIS file

IBIS files are plain text files that can be opened in any text editor. However, for a better reading experience, they can be opened in the visual IBIS Editor. Various free tools including Visual IBIS editors can be downloaded from https://ibis.org/tools/.

2.3 IBIS naming convention

This section provides basic information about the naming convention used for different models in IBIS. While understanding the naming convention is not required to perform signal integrity, it provides brief understanding to PCB and hardware designer about the various features of an IBIS model.

The name of and IBIS model includes following basic information:

- type of the I/O driver/receiver
- drive strength of the model
- voltage used

IBIS models can work on multiple voltages and drive strengths. The maximum number of characters for an IBIS model name is 18.

Some of the examples for IBIS naming convention include the following:

Example 1

Type_<initial drive to final drive strength (in mA)>_<operating voltage >_<type> OR
Type_<initial drive to final drive strength (in mA)>_<type>_<operating voltage >

Type defines the pin type.

Table 1 IBIS naming – sample 1

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_216_26</td>
<td>A complementary metal oxide semiconductor (CMOS) type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 2.6 V</td>
</tr>
<tr>
<td>s_216_26_nb</td>
<td>A Schmitt nobscan type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 2.6 V</td>
</tr>
<tr>
<td>s_28_26_hv</td>
<td>A Schmitt high voltage type pin with a drive strength between 2 mA and 8 mA and an operating voltage of 2.6 V</td>
</tr>
<tr>
<td>s_216_nl_18</td>
<td>A Schmitt no latch type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 1.8 V</td>
</tr>
<tr>
<td>s_216_nbnl_18</td>
<td>A Schmitt no latch and no boundary scan type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 1.8 V</td>
</tr>
</tbody>
</table>

Example 2

Type_<initial drive to final drive strength (in mA) or total drive options>_<operating voltage>_<type>_<simulated voltage>_<settings>

Type defines the pin type and simulated voltage defines the voltage at which the buffer is simulated for specific drive settings.

NOTE: The simulated voltage can be less than or equal to the voltage for normal operation.
Table 2 IBIS naming – sample 2

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_216_26_18_010</td>
<td>A Schmitt type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 2.6 V; the buffer is simulated at 1.8 V with the drive setting as 010.</td>
</tr>
<tr>
<td>s_47_18_110</td>
<td>A Schmitt type pin with a drive strength between 4 mA and 7 mA and an operating voltage of 1.8 V; the buffer is simulated at 1.8 V with the drive setting as 110.</td>
</tr>
<tr>
<td>s_216_26_nla_26_001</td>
<td>A Schmitt_nolatch type pin with a drive strength between 2 mA and 16 mA and an operating voltage of 2.6 V; the buffer is simulated at 2.6 V with the drive setting as 001.</td>
</tr>
<tr>
<td>s_8drv_srtctl_00_18_011</td>
<td>A Schmitt_slewratecontrol type pin with eight drive strength options and an operating voltage of 1.8 V; the buffer is simulated at 1.8 V with the drive setting as 011 and the slew rate setting as 00.</td>
</tr>
<tr>
<td>s_216_nolvlshft_18_000</td>
<td>A Schmitt_nolevelshift type pin with a drive strength between 2 mA and 16 mA drive strength options and an operating voltage of 1.8 V; the buffer is simulated at 1.8 V with the drive setting as 000 and the slew rate setting as 00.</td>
</tr>
</tbody>
</table>

Example 3

<Type with interface details>_<simulated voltage>_<settings>

Type defines the pin type. For special interfaces like USB, SGMII, and LPDDR2, the Type is described with interface name and pin details. simulated voltage defines the voltage at which the buffer is simulated for specific settings. Settings can be drive strength and/or slew rate. In some cases, additional settings are also allowed. Details of these additional settings can be found in the Model Selector section of the buffer in IBIS file.

NOTE: The simulated voltage can be less than or equal to the voltage for a normal operation.

Table 3 IBIS naming – sample 3

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpddr2_dq_12_10011</td>
<td>A LPDDR2 DQ pin with an operating voltage of 1.2 V; the buffer is simulated at 1.2 V with the drive setting as 100 and the slew rate setting as 11.</td>
</tr>
<tr>
<td>hsic_dq_12_01000</td>
<td>A HSIC DQ pin with an operating voltage of 1.2 V; here the buffer is simulated at 1.2 V with the drive setting as 010 and the slew rate setting as 11.</td>
</tr>
<tr>
<td>qmp_sgmii_tx_1225_00000</td>
<td>A SGMII TX pin with an operating voltage of 1.225 V; here the buffer is simulated at 1.225 V with the drive setting as 00000.</td>
</tr>
<tr>
<td>tcxo_18</td>
<td>A TCXO pin with an operating voltage of 1.8 V; here the buffer is simulated at 1.8 V.</td>
</tr>
</tbody>
</table>
2.3.1 Types of I/O drivers/receivers

Table 4 lists the examples of the types of the I/O drivers and receivers.

Table 4 I/O drivers and receivers

<table>
<thead>
<tr>
<th>Type of I/O driver/receiver</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>CMOS type receiver</td>
</tr>
<tr>
<td>s</td>
<td>Schmitt type receiver (Schmitt is a type of CMOS receiver that has a hysteresis property while switching. It switches at different thresholds for low to high and high to low transitions.)</td>
</tr>
<tr>
<td>genout/genin</td>
<td>Direct in and out pads without any digital logic inside</td>
</tr>
<tr>
<td>nbnla nobscan_nolatch</td>
<td>nobscan (no boundary scan and no latch in the I/O)</td>
</tr>
<tr>
<td>nb</td>
<td>nobscan (no boundary scan macro in the I/O)</td>
</tr>
<tr>
<td>nl</td>
<td>nolvlsht (no level shifters in the I/O)</td>
</tr>
<tr>
<td>hv</td>
<td>High voltage</td>
</tr>
</tbody>
</table>

2.3.2 Drive strength

Table 5 lists the example drive strength used by the IBIS model in a naming convention.

Table 5 Drive strength examples

<table>
<thead>
<tr>
<th>Naming convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td>The output driver strength varies from 2 mA to 16 mA.</td>
</tr>
<tr>
<td>47</td>
<td>The output driver strength varies from 4 mA to 7 mA.</td>
</tr>
<tr>
<td>28</td>
<td>The output driver strength varies from 2 mA to 8 mA.</td>
</tr>
</tbody>
</table>

2.3.3 Operating voltage

Supported operating voltages for I/O depend on the semiconductor process. The mostly used voltages are 2.8 V, 1.8 V, and 1.2 V.

2.3.4 Drive setting

Supported I/O drive strength is programmable, and it typically varies from 000 to 111, where 000 indicates the lowest drive, and 111 indicates the highest drive. This information can be extracted from the Model Selector section of an IBIS file.
A References

A.1 Acronyms and terms

<table>
<thead>
<tr>
<th>Acronym or term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>Algorithmic Modeling Information</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary metal oxide semiconductor</td>
</tr>
<tr>
<td>GPIO</td>
<td>General-purpose I/O</td>
</tr>
<tr>
<td>hv</td>
<td>High voltage</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>I/V</td>
<td>Current/voltage</td>
</tr>
<tr>
<td>IBIS</td>
<td>I/O Buffer Information Specification</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>nobscan</td>
<td>No boundary scan</td>
</tr>
<tr>
<td>nolatch</td>
<td>No latch</td>
</tr>
<tr>
<td>nolvlshft</td>
<td>No level shifter</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed circuit board</td>
</tr>
<tr>
<td>QTI</td>
<td>Qualcomm Technologies, Inc.</td>
</tr>
<tr>
<td>R, L, and C</td>
<td>Resistance, inductance, and capacitance</td>
</tr>
<tr>
<td>SI</td>
<td>Signal integrity</td>
</tr>
<tr>
<td>SPICE</td>
<td>Simulation Program with Integrated Circuit Emphasis</td>
</tr>
<tr>
<td>V/T</td>
<td>Voltage/time</td>
</tr>
</tbody>
</table>
PLEASE READ THIS LICENSE AGREEMENT ("AGREEMENT") CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND Qualcomm Technologies, Inc. ("QTI" "WE" "OUR" OR "US"). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, "MATERIALS"). BY USING, ACCESSING, DOWNLOADING OR COMPLETING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

1.1 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions, limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. ("QTI") hereby grants to you a nonexclusive, limited license under QTI’s copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials. You may not use Qualcomm Technologies or its affiliates or subsidiaries name, logo or trademarks; and copyright, trademark, patent and any other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination of this Agreement, Sections 1.2-4 shall survive.

1.2 Indemnification. You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI (including but not limited to costs of defense, investigation and reasonable attorney’s fees) arising out of, resulting from or related to: (i) any breach of this Agreement by You; and (ii) your acts, omissions, products and services. If requested by QTI, You agree to defend QTI in connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.

1.3 Ownership. QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and nothing herein shall be deemed to grant any right to You under any of QTI’s or its affiliates’ patents. You shall not subject the Materials to any third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to support any potential patent infringement claim against QTI, its affiliates, or any of QTI’s or QTI’s affiliates’ suppliers and/or direct or indirect customers. QTI hereby reserves all rights not expressly granted herein.

1.4 DISCLAIMER OF WARRANTIES. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT, IF ANY, ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) A WARRANTY OR REPRESENTATION BY QTI, ITS LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OR (II) A WARRANTY OR REPRESENTATION BY QTI THAT ANY MANUFACTURE OR USE WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES.

1.5 LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI, QTI’S AFFILIATES OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE DELIVERY OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS AGREEMENT, EVEN IF QTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTI, QTI’S AFFILIATES AND ITS LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US$10.

2. COMPLIANCE WITH LAWS; APPLICABLE LAW.

Any litigation or dispute resolution between You and Us arising out of or relating to this Agreement, or Your relationship with Us will take place in the Southern District of California, and You and QTI hereby consent to the personal jurisdiction of and exclusive venue in the state and federal courts within that District with respect any such litigation or dispute resolution. This Agreement will be governed by and construed in accordance with the laws of the United States and the State of California, except that body of California law concerning conflicts of law. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods, the application of which is expressly excluded.

3. CONTRACTING PARTIES. If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI that they have the authority to bind such entity to the terms and conditions of this Agreement.

4. MISCELLANEOUS PROVISIONS. This Agreement, together with all exhibits attached hereto, which are incorporated herein by this reference, constitutes the entire agreement between QTI and You and supersedes all prior negotiations, representations and agreements between the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement are valid and enforceable. QTI shall have no further obligations to You. Each party shall be responsible for and shall bear its own expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested this Agreement and all related documents be prepared in English.