
Qualcomm® Snapdragon Navigator™

Developer Guide

80-P4698-20 B

August 8, 2017

Qualcomm Snapdragon Navigator is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein
are products of Qualcomm Technologies, Inc. or its subsidiaries.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries.
Snapdragon Navigator is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or
registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to
U.S. and international law is strictly prohibited.

Use of this document is subject to the terms set forth in Appendix B.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2017 Qualcomm Technologies, Inc. All rights reserved.

Contents

1 Introduction 6
1.1 Purpose . 6
1.2 Conventions . 6

2 Functional Overview 7

3 Getting Started 8
3.1 Installing the Snapdragon Navigator Developer Files . 8

4 Develop an Application 9
4.1 Writing the Source . 9

4.1.1 Understanding the RC Command Interface . 9
4.2 Building the Source . 10

4.2.1 On Target . 10
4.2.2 Cross Compilation with qrlSDK . 10

4.3 Running the Executable . 10

5 Deprecated List 11

6 Snapdragon Navigator Interface 12
6.1 Commands . 12

6.1.1 Function Documentation . 12
6.1.1.1 sn_update_data . 12
6.1.1.2 sn_spin_props . 13
6.1.1.3 sn_stop_props . 13
6.1.1.4 sn_start_static_accel_calibration . 14
6.1.1.5 sn_get_static_accel_calibration_status 14
6.1.1.6 sn_start_dynamic_accel_calibration 15
6.1.1.7 sn_get_dynamic_accel_calibration_status 15
6.1.1.8 sn_start_imu_thermal_calibration . 16
6.1.1.9 sn_get_imu_thermal_calibration_status 16
6.1.1.10 sn_start_optic_flow_camera_yaw_calibration 17
6.1.1.11 sn_get_optic_flow_camera_yaw_calibration_status 17
6.1.1.12 sn_start_magnetometer_calibration 18
6.1.1.13 sn_get_magnetometer_calibration_status 18
6.1.1.14 sn_send_esc_rpm . 19
6.1.1.15 sn_send_esc_pwm . 20
6.1.1.16 sn_send_rc_command . 21
6.1.1.17 sn_apply_cmd_mapping . 22
6.1.1.18 sn_get_enum_string . 23

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

Qualcomm® Snapdragon Navigator™ Developer Guide Contents

6.1.1.19 sn_get_cmd_name . 23
6.1.1.20 sn_get_dimensioned_units . 24
6.1.1.21 sn_get_min_value . 24
6.1.1.22 sn_get_max_value . 25
6.1.1.23 sn_send_thrust_att_ang_vel_command 26
6.1.1.24 sn_send_trajectory_tracking_command 27
6.1.1.25 sn_set_battery_voltage . 28
6.1.1.26 sn_get_flight_data_ptr . 28
6.1.1.27 sn_set_led_colors . 29
6.1.1.28 sn_get_esc_state_feedback . 30
6.1.1.29 sn_get_est_accel_bias . 31
6.1.1.30 sn_get_est_gyro_bias . 31
6.1.1.31 sn_is_gps_enabled . 32

6.2 Datatypes . 33
6.2.1 Data Structure Documentation . 33

6.2.1.1 struct VersionInfo . 33
6.2.1.2 struct MvSdkVersionInfo . 33
6.2.1.3 struct SensorImuApiVersionInfo . 34
6.2.1.4 struct GeneralStatus . 34
6.2.1.5 struct DataStatus . 34
6.2.1.6 struct UpdateRates . 35
6.2.1.7 struct AttitudeEstimate . 36
6.2.1.8 struct AttitudeEstimate1 . 36
6.2.1.9 struct AttitudeEstimate2 . 36
6.2.1.10 struct CpuStats . 37
6.2.1.11 struct Imu0Raw . 37
6.2.1.12 struct Imu1Raw . 38
6.2.1.13 struct Imu2Raw . 38
6.2.1.14 struct Imu0Compensated . 38
6.2.1.15 struct Imu0CalibrationThermal . 38
6.2.1.16 struct Imu0CalibrationOffset . 39
6.2.1.17 struct Barometer0Raw . 39
6.2.1.18 struct Sonar0Raw . 40
6.2.1.19 struct Mag0Raw . 40
6.2.1.20 struct Mag1Raw . 40
6.2.1.21 struct Mag0Compensated . 40
6.2.1.22 struct Mag1Compensated . 41
6.2.1.23 struct Mag0Calibration3D . 41
6.2.1.24 struct SpektrumRc0Raw . 41
6.2.1.25 struct ApiRcRaw . 41
6.2.1.26 struct ApiThrustAttAngVel . 42
6.2.1.27 struct ApiPropsCmd . 42
6.2.1.28 struct RcActive . 42
6.2.1.29 struct Camera0FrameInfo . 43
6.2.1.30 struct OpticFlow0Raw . 43
6.2.1.31 struct OpticFlow0CalibrationTilt . 43
6.2.1.32 struct Gps0Raw . 44
6.2.1.33 struct TrajectoryDataRaw . 44
6.2.1.34 struct PosVel . 45
6.2.1.35 struct VioPosVel . 46

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

Qualcomm® Snapdragon Navigator™ Developer Guide Contents

6.2.1.36 struct GpsPosVel . 46
6.2.1.37 struct OpticFlowPosVel . 47
6.2.1.38 struct EscRaw . 47
6.2.1.39 struct VoaData . 47
6.2.1.40 struct VoaStatus . 48
6.2.1.41 struct RelativeObstacleDistances . 48
6.2.1.42 struct GpsOrigin . 48
6.2.1.43 struct FiducialMarkerWorldOffsetRaw 49
6.2.1.44 struct FiducialMarkerWorldOffsetData 49
6.2.1.45 struct SimGroundTruth . 49
6.2.1.46 struct SnavCachedData . 50

6.2.2 Enumeration Type Documentation . 51
6.2.2.1 SnMode . 51
6.2.2.2 SnInputCommandType . 52
6.2.2.3 SnRcCommandSource . 52
6.2.2.4 SnRcCommandType . 53
6.2.2.5 SnPositionController . 53
6.2.2.6 SnTrajectoryOptions . 54
6.2.2.7 SnRcCommandOptions . 54
6.2.2.8 SnPropsState . 54
6.2.2.9 SnDataStatus . 54
6.2.2.10 SnMotorState . 55
6.2.2.11 SnCalibStatus . 55
6.2.2.12 SnRcReceiverMode . 55
6.2.2.13 SnGnssReceiverType . 56
6.2.2.14 SnPosEstType . 56

A Troubleshooting 57
A.1 Propellers are not spinning when commanded . 57

A.1.1 Calling the sn_start_props() function . 57

B Terms and Conditions 58

C References 60
C.1 Related Documents . 60
C.2 Acronyms and Terms . 60

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

List of Tables
2-1 Snapdragon Navigator API files . 7
4-1 Snapdragon Navigator RC commands general meaning 9
4-2 Snapdragon Navigator RC command details . 10

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

1 Introduction

1.1 Purpose

This document describes how to use the Snapdragon Navigator API to develop applications that interact
with Snapdragon Navigator. It is important to understand Snapdragon Navigator operation and install
Snapdragon Navigator on the target before using this document. Refer to Qualcomm Snapdragon Navigator
User Guide (80-P4698-18).

This document assumes that the reader has a basic knowledge of UNIX.

1.2 Conventions

Function declarations, function names, type declarations, and code samples appear in a different font, e.g.,
#include.

Code variables appear in angle brackets, e.g., <number>.

Commands and command variables appear in a different font, e.g., copy a:*.* b:.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

2 Functional Overview

The Snapdragon Navigator API enables external applications to interact with the internal flight controller,
permitting higher-level applications written in C or C++ to control the vehicle’s movement.

For basic Snapdragon Navigator API usage, refer to https://github.com/ATLFlight/snav_api_examples.

Table 2-1 lists and describes the files provided by the Snapdragon Navigator API.

Table 2-1 Snapdragon Navigator API files

Filename Description
snapdragon_navigator.h Header file containing Snapdragon Navigator API function declarations
snav_types.h Header file containing Snapdragon Navigator API type declarations
snav_cached_data.h Header file containing Snapdragon Navigator API cached data struct

declarations
libsnav_arm.so Library containing Snapdragon Navigator API implementation

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

https://github.com/ATLFlight/snav_api_examples

3 Getting Started

3.1 Installing the Snapdragon Navigator Developer Files

Refer to Qualcomm Snapdragon Navigator User Guide (80-P4698-18) for instructions on how to install a
Snapdragon Navigator Debian package.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

4 Develop an Application

For basic Snapdragon Navigator API usage, refer to https://github.com/ATLFlight/snav_api_examples.

4.1 Writing the Source

To write a program for the applications processor that uses the Snapdragon Navigator API, include the
snapdragon_navigator.h header file in C or C++ code. Use the example programs as a guide to
using the API. Here are a few things to keep in mind:

• The vehicle can only be under API control if it is receiving commands frequently enough; this serves
as a heartbeat to notify the vehicle that the external application is running. Commands must be sent
periodically before the vehicle can enter API control.

• It is recommended to store the estimated position and yaw at startup, and use them to zero out the
estimated position and yaw in the application. This sets the origin as the vehicle’s state at takeoff.

The application must grab the estimated position and yaw just after the propeller state transitions to
starting, not after the props state transitions to spinning. Transient pressure data due to the ground
effect can have an unexpected impact on the Z estimate.

• Knowing the estimated position and yaw is useful, but in most cases, it is best to have the application
use the desired position and yaw for control. Controlling the desired position and yaw is equivalent to
moving around the setpoint of the internal position controller. This allows the internal position
controller to control the higher order dynamics of the system.

4.1.1 Understanding the RC Command Interface

When developing an application to compute control commands in real units, such as following a trajectory
or going to a waypoint with a calculated velocity profile, it is crucial to understand how the four unitless
control commands are interpreted in different flight modes.

The general meaning of the four unitless commands is summarized in Table 4-1. For the meaning of each
RC command type, see Table 4-2.

Table 4-1 Snapdragon Navigator RC commands general meaning

cmd0 cmd1 cmd2 cmd3
Positive Forward Left Up Rotate

counter-clockwise
Negative Backward Right Down Rotate clockwise

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

https://github.com/ATLFlight/snav_api_examples

Qualcomm® Snapdragon Navigator™ Developer Guide Develop an Application

Table 4-2 Snapdragon Navigator RC command details

cmd0 cmd1 cmd2 cmd3
SN_RC_OPTIC_FLOW_POS_
HOLD_CMD

Speed in
vehicle-relative
X direction

Speed in
vehicle-relative
Y direction

Vertical speed Yaw rate

SN_RC_VIO_POS_HOLD_CMD Speed in
vehicle-relative
X direction

Speed in
vehicle-relative
Y direction

Vertical speed Yaw rate

SN_RC_GPS_POS_HOLD_CMD Speed in
vehicle-relative
X direction

Speed in
vehicle-relative
Y direction

Vertical speed Yaw rate

SN_RC_ALT_HOLD_CMD Pitch angle Negative roll
angle

Vertical speed Yaw rate

SN_RC_ALT_HOLD_LOW_
ANGLE_CMD

Pitch angle Negative roll
angle

Vertical speed Yaw rate

SN_RC_THRUST_ANGLE_GPS_
HOVER_CMD

Pitch angle Negative roll
angle

Thrust
magnitude

Yaw rate

SN_RC_THRUST_ANGLE_CMD Pitch angle Negative roll
angle

Thrust
magnitude

Yaw rate

SN_RC_RATES_CMD Pitch rate Negative roll
rate

Thrust
magnitude

Yaw rate

4.2 Building the Source

4.2.1 On Target

To build an executable on target, use gcc or g++:

$ g++ my_sn_api_test.cpp -o my_sn_api_test -I/home/linaro/examples/inc
-lsnav_arm

See the Makefile that builds the examples as a reference.

4.2.2 Cross Compilation with qrlSDK

Cross compilation is not yet supported but will be added in a future software release.

4.3 Running the Executable

1. Verify that Snapdragon Navigator is running.

2. Run the executable.

For example: $./my_sn_api_test

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

5 Deprecated List

Global sn_get_est_accel_bias (float ∗ax_bias, float ∗ay_bias, float ∗az_bias) __SNAV_EXTERNAL_S-
YMBOL_ATTRIBUTE

This function will be removed in a future release.

Global sn_get_est_gyro_bias (float ∗wx_bias, float ∗wy_bias, float ∗wz_bias) __SNAV_EXTERNAL_-
SYMBOL_ATTRIBUTE

This function will be removed in a future release.

Global sn_is_gps_enabled (int ∗gps_enabled) __SNAV_EXTERNAL_SYMBOL_ATTRIBUTE

This function will be removed in a future release.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

6 Snapdragon Navigator Interface

This chapter describes the Snapdragon Navigator interface enumerations, structures, and functions.

6.1 Commands

6.1.1 Function Documentation

6.1.1.1 int sn_update_data ()

Updates the internal cache of flight control data.

Detailed description

This function caches the current state of all other components that can be queried. This function must
be called once per control loop before querying the flight software information. This function also
handles initialization of API assets and must be called at least once before calling any other API
function.

Returns

• 0 for success

• -1 for failure (flight software non-functional)

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.2 int sn_spin_props ()

Non-blocking attempt to spin propellers.

Detailed description

This function does not guarantee that propellers start spinning. Instead, safety checks are performed
and then propellers started if deemed safe.

This function introduces a time delay before the propellers spin.

Note: For this function to have effect, the following conditions must be met:

• Propellers must not be spinning – Verify using the sn_get_props_state() function.

• Vehicle must be in a flight mode, that is, a heartbeat must already be established by calling
sn_send_rc_command() or a similar function.

Check SnPropsState using the sn_get_props_state() function to verify that the command executed.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.3 int sn_stop_props ()

Non-blocking attempt to stop propellers.

Detailed description

This function does not guarantee that propellers stop spinning. Safety checks are performed internally
and propellers stop if deemed safe.

Note: For this function to have effect, the following conditions must be met:

• Propellers must be spinning or starting – Verify using the sn_get_props_state() function.

• Vehicle must be in a flight mode, that is, a heartbeat must already be established by calling
sn_send_rc_command() or a similar function.

Check SnPropsState using the sn_get_props_state() function to verify that the command executed.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.4 int sn_start_static_accel_calibration ()

Non-blocking attempt to start static accelerometer calibration.

Detailed description

Calibration only starts if it is deemed safe and appropriate for vehicle to do so. Refer to Qualcomm
Snapdragon Navigator User Guide (80-P4698-18) for instructions.

During this calibration, ensure vehicle is completely stationary on a level surface. Use the information
in the GeneralStatus struct to determine whether the calibration succeeds or fails.

Note: Vehicle must be rebooted after calibration to enable flight.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.5 int sn_get_static_accel_calibration_status (SnCalibStatus ∗ status)

Gets the static accelerometer calibration status from the internal cache of flight control data. This function
can be used to determine if calibration data exists or if the calibration procedure is in progress.

Associated data types

SnCalibStatus

Parameters

out status Pointer to value to be set to the status of the static
accelerometer calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.6 int sn_start_dynamic_accel_calibration ()

Non-blocking attempt to start dynamic accelerometer calibration.

Detailed description

Calibration only starts if it is deemed safe and appropriate for vehicle to do so.

Refer to Qualcomm Snapdragon Navigator User Guide (80-P4698-18) for instructions.

Use the information in the GeneralStatus struct to determine whether the calibration succeeds or fails.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.7 int sn_get_dynamic_accel_calibration_status (SnCalibStatus ∗ status)

Gets the status of dynamic accelerometer calibration from the internal cache of flight control data. This
function can be used to determine if calibration data exists or if the calibration procedure is in progress.

Associated data types

SnCalibStatus

Parameters

out status Pointer to the value to be set to the status of the dynamic
accelerometer calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.8 int sn_start_imu_thermal_calibration ()

Non-blocking attempt to start thermal IMU calibration.

Detailed description

Calibration only starts if it is deemed safe and appropriate for vehicle to do so. Refer to Qualcomm
Snapdragon Navigator User Guide (80-P4698-18) for instructions.

During this calibration, ensure vehicle is completely stationary on a level surface.

Increase the vehicle temperature during this test to ensure that a large temperature range observed.

Use the information in the GeneralStatus struct to determine whether the calibration succeeds or fails.

Note: The vehicle must be rebooted after calibration to enable flight.

Note: A static calibration is required immediately after thermal calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.9 int sn_get_imu_thermal_calibration_status (SnCalibStatus ∗ status)

Gets the status of thermal IMU calibration from the internal cache of flight control data. This function can
be used to determine if calibration data exists or if the calibration procedure is in progress.

Associated data types

SnCalibStatus

Parameters

out status Pointer to the value to be set to the status of the IMU thermal
calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.10 int sn_start_optic_flow_camera_yaw_calibration ()

Non-blocking attempt to start optic flow camera yaw calibration.

Detailed description

Calibration only starts if it is deemed safe and appropriate for the vehicle. Refer to Qualcomm
Snapdragon Navigator User Guide (80-P4698-18) for instructions on how to run this calibration.

Note: Vehicle must be rebooted after calibration to enable flight.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.11 int sn_get_optic_flow_camera_yaw_calibration_status (SnCalibStatus ∗
status)

Gets the status of optic flow camera yaw calibration from the internal cache of flight control data. This
function can be used to determine if calibration data exists or if the calibration procedure is in progress.

Associated data types

SnCalibStatus

Parameters

out status Pointer to the value to be set to the status of the optic flow
camera yaw calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.12 int sn_start_magnetometer_calibration ()

Non-blocking attempt to start magnetometer (compass) calibration.

Detailed description

Calibration only starts if it is deemed safe and appropriate for the vehicle. Refer to Qualcomm
Snapdragon Navigator User Guide (80-P4698-18) for instructions on how to run this calibration.

Note: The vehicle must be rebooted after calibration to enable flight.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.13 int sn_get_magnetometer_calibration_status (SnCalibStatus ∗ status)

Gets the magnetometer calibration status from the internal cache of flight control data. This function can be
used to determine if calibration data exists or if the calibration procedure is in progress.

Associated data types

SnCalibStatus

Parameters

out status Pointer to the value to be set to the status of the magnetometer
calibration.

Returns

• 0 if attempt was received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.14 int sn_send_esc_rpm (int ∗ rpm_data, unsigned int size, int fb_id)

Sends RPM commands to the ESCs and requests feedback.

Parameters

in rpm_data Pointer to the array containing RPM data to be sent to ESCs.
RPMs are ordered in ascending order of ESC ID, e.g., [rpm_0,
rpm_1, ..., rpm_n]

in size Number of rpm_data array elements.
in fb_id ID of the ESC from which feedback is desired. If fb_id = -1, no

feedback is requested.

Detailed description

Sending this command does not guarantee that the ESCs spin the motors. If the vehicle is not in flight,
the flight controller forwards the RPM commands to the ESCs. The ESC identified by fb_id requests
feedback.

Note: RPM commands must be sent at a rate between 100 Hz and 500 Hz.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.15 int sn_send_esc_pwm (int ∗ pwm_data, unsigned int size, int fb_id)

Sends PWM commands to the ESCs and requests feedback.

Parameters

in pwm_data Pointer to int array containing PWM data in the range [-800,
800] to be sent to ESCs. PWMs are ordered in ascending order
of ESC ID, e.g. [pwm_0, pwm_1, ..., pwm_n].

in size Number of pwm_data array elements.
in fb_id ID of the ESC from which feedback is desired. If fb_id = -1, no

feedback is requested.

Detailed description

The pwm_data array contains ESC PWMs in the range of [-800, 800] in which 800 corresponds to
100% duty cycle and negative implies reversed direction.

Sending this command does not guarantee that the ESCs spin the motors. If the vehicle is not in flight,
the flight controller forwards the PWM commands to the ESCs. The ESC identified by fb_id requests
feedback.

Note: PWM commands must be sent at a rate between 100 Hz and 500 Hz.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.16 int sn_send_rc_command (SnRcCommandType type, SnRcCommand-
Options options, float cmd0, float cmd1, float cmd2, float cmd3
)

Sends an "RC-like" command to the flight controller.

Associated data types

SnRcCommandType
SnRcCommandOptions

Parameters

in type Specification of the desired input interpretation.
in options Options for interpreting the command.
in cmd0 Value in the range [-1.0, 1.0] specifying a "forward/backward"

type command in which "forward" is positive.
in cmd1 Value in the range [-1.0, 1.0] specifying a "left/right" type

command in which "left" is positive.
in cmd2 Value in the range [-1.0, 1.0] specifying an "up/down" type

command in which "up" is positive.
in cmd3 Value in the range [-1.0, 1.0] specifying a "rotate" type

command in which rotating counter-clockwise is positive.

Detailed description

This function sends four dimensionless control commands to the flight controller and establishes a
heartbeat for the API application. The interpretation of the four commands depends on the mode,
which can be obtained from the current_mode field of the GeneralStatus struct. The desired meaning
of the four commands is specified with the type parameter. A heartbeat must be established by calling
this function before the flight controller allows the API to take control, such as to start spinning the
propellers.

See Section 4.1.1 for the meaning of the four commands in different contexts.

Suggested SnRcCommandOptions option usage:

• RC_OPT_DEFAULT_RC for intuitive joystick control, including a small deadband to prevent
drift and more intuitive mapping

• RC_OPT_LINEAR_MAPPING for absolute control of outputs – Useful with the
sn_apply_cmd_mapping() function

Note: RC commands must be sent at a rate of at least 50 Hz.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

• -2 if any command is NaN

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.17 int sn_apply_cmd_mapping (SnRcCommandType type, SnRcCommand-
Options options, float input0, float input1, float input2, float input3, float ∗
cmd0, float ∗ cmd1, float ∗ cmd2, float ∗ cmd3)

Converts dimensioned commands into dimensionless commands.

Associated data types

SnRcCommandType
SnRcCommandOptions

Parameters

in type Command type remapped to match the type used subsequently
in the sn_send_rc_command() function.

in options Options to apply during mapping. See sn_send_rc_command().
in input0 Dimensioned command to be mapped into cmd0.
in input1 Dimensioned command to be mapped into cmd1.
in input2 Dimensioned command to be mapped into cmd2.
in input3 Dimensioned command to be mapped into cmd3.
out cmd0 Mapped unitless command 0 to be sent with the

sn_send_rc_command() function.
out cmd1 Mapped unitless command 1 to be sent with the

sn_send_rc_command() function.
out cmd2 Mapped unitless command 2 to be sent with the

sn_send_rc_command() function.
out cmd3 Mapped unitless command 3 to be sent with the

sn_send_rc_command() function.

Detailed description

This function remaps commands with real units into the appropriate dimensionless commands to be
sent with sn_send_rc_command() function. Mapping is based on on the type and options parameters.
See Section 4.1.1 for more information.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

See also

sn_send_rc_command()

6.1.1.18 const char∗ sn_get_enum_string (char ∗ type, int value)

Gets a human-readable string associated with a specific enum type and value.

Parameters

in type String specifying the type of enum value provided. For
example, "SnMode", "SnMotorState", etc.

in value Value to be converted to a string (based on the type provided).

Returns

Pointer to the string corresponding to the provided enum.

Dependencies

None.

6.1.1.19 const char∗ sn_get_cmd_name (SnRcCommandType type)

Gets the the name of an RC command from the type.

Parameters

in type RC command type of interest.

Returns

Pointer to the command name.

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.20 const char∗ sn_get_dimensioned_units (SnRcCommandType type, int index
)

Gets the the dimensioned units of an RC command from the type and index.

Associated data types

SnRcCommandType

Parameters

in type RC command type of interest.
in index Index in range [0, 3] corresponding to cmd0 through cmd3.

Returns

Pointer to the units of a particular command.

Dependencies

None.

6.1.1.21 float sn_get_min_value (SnRcCommandType type, int index)

Gets the the minimum value in real units for an RC command from the type and index.

Associated data types

SnRcCommandType

Parameters

in type RC command type of interest.
in index Index in range [0,3] corresponding to cmd0 through cmd3.

Detailed description

This function returns the smallest possible command to be applied to the system. The returned value
maps to a dimensionless value of -1.0.

Use sn_get_dimensioned_units() to get a string descripton of the units.

Returns

Minimum-allowed value in real units.

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.22 float sn_get_max_value (SnRcCommandType type, int index)

Gets the the maximum value in real units for an RC command from the type and index.

Associated data types

SnRcCommandType

Parameters

in type RC command type of interest.
in index Index in the range [0,3] corresponding to cmd0 through cmd3.

Detailed description

This function returns the largest possible command to be applied to the system. This value maps to a
dimensionless value of 1.0.

Use the sn_get_dimensioned_units() function to get a string descripton of the units.

Returns

Maximum-allowed value in real units.

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.23 int sn_send_thrust_att_ang_vel_command (float thrust, float qw, float qx,
float qy, float qz, float wx, float wy, float wz)

Sends thrust, attitude, and angular velocity.

Parameters

in thrust Commanded thrust in grams.
in qw Scalar component of quaternion.
in qx X component of vector part of the quaternion.
in qy Y component of vector part of the quaternion.
in qz Z component of vector part of the quaternion.
in wx X component of angular velocity in rad/s.
in wy Y component of angular velocity in rad/s.
in wz Z component of angular velocity in rad/s.

Detailed description

This function sends the desired thrust in grams, desired attitude represented as a quaternion, and the
desired angular velocity vector in rad/s to the flight controller.

The quaternion is in the following form:

q = qw + qx∗i + qy∗j + qz∗k

Note: Be cautious – This function is for advanced users.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

• -2 if any input arguments are NaN

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.24 int sn_send_trajectory_tracking_command (SnPositionController controller,
SnTrajectoryOptions options, float x, float y, float z, float xd, float yd, float
zd, float xdd, float ydd, float zdd, float yaw, float yaw_rate)

Sends position, angle, and derivatives for advanced trajectory tracking.

Parameters

in controller Desired position controller.
in options Options for trajectory tracking.
in x X component of the position vector in the specified frame.
in y Y component of the position vector in the specified frame.
in z Z component of the position vector in the specified frame.
in xd X component of the velocity vector in the specified frame.
in yd Y component of the velocity vector in the specified frame.
in zd Z component of the velocity vector in the specified frame.
in xdd X component of the acceleration vector in the specified frame.
in ydd Y component of the acceleration vector in the specified frame.
in zdd Z component of the acceleration vector in the specified frame.
in yaw Gravity-aligned yaw angle relative to the specified frame.
in yaw_rate Rate at which the gravity-aligned yaw angle changes.

Detailed description

This function allows precise control of the desired trajectories to use feed-forward acceleration angles.
Note: This function is intended for advanced users – A trajectory planner must be used to update these
options at a minimum of 50 Hz.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

• -2 if any input arguments are NaN

• -3 if the specified control mode is unavailable

Dependencies

None.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.25 int sn_set_battery_voltage (float voltage)

Sets the battery voltage.

Parameters

in voltage Battery voltage (V).

Detailed description

This function overrides the internal battery voltage estimate. This function must be called at a rate
faster than 5 Hz for the value to be considered valid, otherwise the flight controller defaults to the
internal estimate of battery voltage.

Returns

• 0 if command received

• -1 for failure (flight software non-functional)

• -2 if the voltage is less than or equal to zero, or is NaN

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

6.1.1.26 int sn_get_flight_data_ptr (int size_cached_struct, SnavCachedData ∗∗
snav_cached_data_struct)

Gets the pointer to the Snapdragon Navigator cached data structure.

Associated data types

SnavCachedData

Parameters

in size_cached_struct Structure size. Ensures that the header file stays in sync. This
argument must be sizeof(SnavCachedData).

out snav_cached_data_-
struct

Pointer to be filled with the cached data structure pointer
values. This structure is updated with a call to
sn_update_data().

Returns

• 0 if flight data pointer returns successfully

• -1 for failure to get the pointer to flight data

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Dependencies

None.

6.1.1.27 int sn_set_led_colors (const uint8_t ∗ led_colors_input_array, int
led_colors_size, int led_colors_timeout_us)

Sets the LED colors, overriding the Snapdragon Navigator LED colors.

Parameters

in led_colors_input_-
array

Array of RGB triplets. The range for each value is 0-255.

in led_colors_size Size of the input color array – Value must be greater than zero,
less than 25, and a multiple of 3.

in led_colors_timeout_-
us

Timeout in microseconds for Snapdragon Navigator to take
over LED control after the API color commands stop.

Detailed description

This function overrides the internal output of the LED colors. Currently only a single RGB triplet is
used (first three bytes). The timeout variable specifies the time in microseconds when the LED output
switches back to Snapdragon Navigator control after the API color commands stop updating. Color
values are interpreted as binary (0 = Off, otherwise = On).

Returns

• 0 command received

• -1 critical failure (flight software is most likely non-functional)

• -2 bad length of the color data array

• -3 negative value provided as timeout

Dependencies

The sn_update_data() function must be called at least once prior to calling this function.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.28 int sn_get_esc_state_feedback (SnMotorState ∗ state_feedback, unsigned
int size, unsigned int ∗ used)

Gets the ESC state feedback data from from the internal cache of flight control data.

Associated data types

SnMotorState

Parameters

out state_feedback Pointer to the array to be filled with states from ESCs. The
array is filled in ascending order of ESC IDs, e.g. [state_0,
state_1, ..., state_n]

in size Number of state_feedback array elements.
out used Pointer to the value to be set to the number of elements used of

the state_feedback array

Detailed description

The given array must have a number of elements equal to the number of ESCs connected to the flight
controller.

If the given array is too small to hold all of the feedback data, no data copies into the array and the
function returns an error code.

Note: ESC feedback data is only updated if feedback is requested. See the sn_send_esc_rpm() and
sn_send_esc_pwm() functions.

Returns

• 0 for success

• -1 for failure (flight software non-functional)

• -2 if the size of the array is not big enough to hold all of the feedback data

Dependencies

The sn_update_data() function must be called to refresh the internal cache of flight control data.

See also

sn_send_esc_rpm()
sn_send_esc_pwm()

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.1.1.29 int sn_get_est_accel_bias (float ∗ ax_bias, float ∗ ay_bias, float ∗ az_bias)

Deprecated This function will be removed in a future release.

Query-estimated accelerometer biases.

Parameters

ax_bias Reference to the float to be filled with the X accelerometer-estimated bias in
G’s.

ay_bias Reference to the float to be filled with the Y accelerometer-estimated bias in
G’s.

az_bias Reference to the float to be filled with the Z accelerometer-estimated bias in
G’s.

Detailed description

Biases are represented with respect to the flight controller’s body frame.
Accelerometer biases are defined as follows:
compensated linear acceleration = raw linear acceleration - biases

Returns

• 0 for success

• -1 for failure (flight software is most likely non-functional)

Dependencies

The sn_update_data() function must be called to update these values.

6.1.1.30 int sn_get_est_gyro_bias (float ∗ wx_bias, float ∗ wy_bias, float ∗ wz_bias)

Deprecated This function will be removed in a future release.

Query-estimated gyroscope biases.

Parameters

wx_bias Reference to the float to be filled with the X gyro-estimated bias.
wy_bias Reference to the float to be filled with the Y gyro-estimated bias.
wz_bias Reference to the float to be filled with the Z gyro-estimated bias.

Returns

• 0 for success

• -1 for failure (most likely indicates flight non-functional software)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Dependencies

The sn_update_data() function must be called to update these values.

6.1.1.31 int sn_is_gps_enabled (int ∗ gps_enabled)

Deprecated This function will be removed in a future release.

Detects whether GPS is enabled.

Parameters

out gps_enabled Pointer to GPS enable status – 1 if GPS is enabled; 0 otherwise.

Returns

• 0 for success

• -1 for failure (flight software non-functional)

Dependencies

The sn_update_data() function must be called to refresh the internal cache of flight control data.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2 Datatypes

6.2.1 Data Structure Documentation

6.2.1.1 struct VersionInfo

Version information required to uniquely identify the software and device.

Data fields

Type Parameter Description
char device_-

identifier[20]
Version of the DSPaL library used.

char compile_-
date[16]

Null terminated string containing the compilation date.

char compile_-
time[16]

Null terminated string containing the compilation time.

char library_-
version[18]

Null terminated string representing version information.

char library_-
hash[41]

Null terminated string with a unique build identifier.

char mac_-
address[18]

Null terminated string containing wlan0 mac address if it was
successfully polled.

char dspal_-
version[40]

Version of the DSPaL library used.

int32_t esc_hw_-
version[8]

Hardware revision of the ESCs.

int32_t esc_sw_-
version[8]

Software version of the ESCs.

6.2.1.2 struct MvSdkVersionInfo

Machine vision (MV) version information.

Data fields

Type Parameter Description
char version_-

recommended[18]
Null-terminated string containing the recommended MV SDK
version.

char version_-
found[18]

Null-terminated string containing the MV SDK version found on the
system.

uint8_t strict_checking Specifies if the recommended MV SDK version is required.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.3 struct SensorImuApiVersionInfo

Version of the sensor_imu API.

Data fields

Type Parameter Description
char version_-

recommended[18]
Null-terminated string containing the recommended sensor_imu
API version.

char version_-
found[18]

Null-terminated string containing the sensor_imu API version found
on the system.

uint8_t strict_checking Specifies if the recommended sensor_imu API version is required.

6.2.1.4 struct GeneralStatus

General system state information for debugging system issues.

Data fields

Type Parameter Description
int64_t time Time at which the most recent iteration of the main flight loop

started. (Units: µs)
uint32_t loop_cntr Number of times the control loop has run.
int32_t desired_mode Cast to enum: SnMode. Desired mode that the flight controller

attempts to transition to.
int32_t current_mode Cast to enum: SnMode. Current flight controller mode.
float voltage Estimated input system voltage. (Units: V)
float current If available, the estimated electrical current being used by the

system. (Units: A)
uint8_t is_using_-

external_-
voltage

1 – Voltage is being measured by the external voltage driver. 0 –
Voltage is measured using ESCs.

int32_t props_state Cast to enum: SnPropsState. Propeller state.
uint8_t on_ground Flag representing flight controller’s detection of the device being on

the ground. 1 – Device on the ground, 0 otherwise.
int32_t input_cmd_-

type
Cast to enum: SnInputCommandType. Input command type.

char last_error_-
code[32]

Null-terminated string to represent the last error code detected. To
allow detection of infrequent errors, this string persists even if
cleared by an error code.

6.2.1.5 struct DataStatus

Status of various sensors and estimators.

Data fields

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: ms)
uint32_t loop_cntr Number of times at which the control loop has run.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 34

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
int32_t imu_0_status Cast to enum: SnDataStatus. IMU sensor status.
int32_t baro_0_status Cast to enum: SnDataStatus. Barometer sensor status.
int32_t esc_feedback_-

status
Cast to enum: SnDataStatus. ESC feedback status.

int32_t mag_0_status Cast to enum: SnDataStatus. Magnetometer sensor.
int32_t gps_0_status Cast to enum: SnDataStatus. Global positioning GPS sensor status.
int32_t sonar_0_status Cast to enum: SnDataStatus. Sonar sensor status.
int32_t optic_flow_0_-

status
Cast to enum: SnDataStatus. Optic flow (DFT) sensor status.

int32_t spektrum_rc_0-
_status

Cast to enum: SnDataStatus. Spektrum RC sensor status.

int32_t api_rc_status Cast to enum: SnDataStatus. API RC command status.
int32_t rc_active_status Cast to enum: SnDataStatus. Active RC command status.
int32_t height_-

estimator_-
status

Cast to enum: SnDataStatus. Height estimator status.

int32_t attitude_-
estimator_-
status

Cast to enum: SnDataStatus. Attitude estimator status.

int32_t vio_0_status Cast to enum: SnDataStatus. Visual inertial odometry (VIO) status.
int32_t voa_status Cast to enum: SnDataStatus. Visual obstacle avoidance (VOA)

status.
int32_t api_trajectory_-

status
Cast to enum: SnDataStatus. Status of trajectory data.

6.2.1.6 struct UpdateRates

System and sensor update rates.

Data fields

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t loop_cntr Number of times the control loop has run.
float control_loop_-

freq
Main control loop update frequency. (Units: Hz)

float imu0_freq IMU0 update frequency. (Units: Hz)
float imu1_freq IMU1 update frequency. (Units: Hz)
float imu2_freq IMU2 update frequency. (Units: Hz)
float baro0_freq Baro0 update frequency. (Units: Hz)
float mag0_freq Mag0 update frequency. (Units: Hz)
float sonar0_freq Sonar0 update frequency. (Units: Hz)
float rc0_freq RC0 update frequency. (Units: Hz)
float esc_fb_freq ESC feedback update frequency. (Units: Hz)
float gnss0_freq GNSS0 update frequency. (Units: Hz)
float gnss1_freq GNSS1 update frequency. (Units: Hz)
float voa_freq VOA update frequency. (Units: Hz)
float vio0_freq VIO0 update frequency. (Units: Hz)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.7 struct AttitudeEstimate

Estimate of the vehicle orientation.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Counter incremented upon successful computation of the attitude

estimate.
float roll Roll angle using Tait-Bryan ZYX. (Units: rad)
float pitch Pitch angle using Tait-Bryan ZYX. (Units: rad)
float yaw Yaw angle using Tait-Bryan ZYX. (Units: rad)
float rotation_-

matrix[9]
Rotation matrix from vehicle body to world in row-major order.

float magnetic_yaw-
_offset

Yaw angle with respect to magnetic east = yaw +
magnetic_yaw_offset. (Units: rad)

float magnetic_-
declination

Yaw angle with respect to true east = yaw + magnetic_yaw_offset +
magnetic_declination. (Units: rad)

6.2.1.8 struct AttitudeEstimate1

Estimate of the vehicle orientation.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Counter incremented upon successful computation of the attitude

estimate.
float roll Roll angle using Tait-Bryan ZYX. (Units: rad)
float pitch Pitch angle using Tait-Bryan ZYX. (Units: rad)
float yaw Yaw angle using Tait-Bryan ZYX. (Units: rad)
float rotation_-

matrix[9]
Rotation matrix from the vehicle body to world in row-major order.

float magnetic_yaw-
_offset

Yaw angle with respect to magnetic east = yaw +
magnetic_yaw_offset. (Units: rad)

float magnetic_-
declination

Yaw angle with respect to true east = yaw + magnetic_yaw_offset +
magnetic_declination. (Units: rad)

6.2.1.9 struct AttitudeEstimate2

Estimate of the vehicle orientation.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Counter incremented upon successful computation of the attitude

estimate.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
float roll Roll angle using Tait-Bryan ZYX. (Units: rad)
float pitch Pitch angle using Tait-Bryan ZYX. (Units: rad)
float yaw Yaw angle using Tait-Bryan ZYX. (Units: rad)
float rotation_-

matrix[9]
Rotation matrix from the vehicle body to world in row-major order.

float magnetic_yaw-
_offset

Yaw angle with respect to magnetic east = yaw +
magnetic_yaw_offset. (Units: rad)

float magnetic_-
declination

Yaw angle with respect to true east = yaw + magnetic_yaw_offset +
magnetic_declination. (Units: rad)

6.2.1.10 struct CpuStats

Apps processor CPU status.

Data fields

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times data was updated
uint64_t time_apps_us Timestamp from the Apps processor. (Units: µs)
uint64_t time_apps_real-

_us
Timestamp from the Apps processor realtime clock. (Units: µs)

float cur_freq[4] Current Apps processor CPU frequency. If the CPU is not online,
Snapdragon Navigator reads NaN. (Units: GHz)

float max_freq[4] Maximum Apps processor CPU frequency – Can be throttled due to
temperature. If the CPU is not online, Snapdragon Navigator reads
NaN. (Units: GHz)

float temp[22] Temperature measurements from thermal zones. Reads NaN if the
thermal zone is disabled. (Units: °C)

6.2.1.11 struct Imu0Raw

Inertial measurement unit 0 raw data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of measurements received.
float temp IMU temperature. (Units: °C)
float lin_acc[3] Linear acceleration. (Units: gravity (∼9.81 m/s/s))
float ang_vel[3] Angular velocity. (Units: rad/s)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 37

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.12 struct Imu1Raw

Inertial measurement unit 1 raw data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of measurements received.
float temp IMU temperature. (Units: °C)
float lin_acc[3] Linear acceleration. (Units: gravity (∼9.81 m/s/s))
float ang_vel[3] Angular velocity. (Units: rad/s)

6.2.1.13 struct Imu2Raw

Inertial measurement unit 2 raw data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of measurements received.
float temp IMU temperature. (Units: °C)
float lin_acc[3] Linear acceleration. (Units: gravity (∼9.81 m/s/s))
float ang_vel[3] Angular velocity. (Units: rad/s)

6.2.1.14 struct Imu0Compensated

Inertial measurement unit (IMU) data after compensation.

Data fields

Type Parameter Description
int64_t time Time data was received. (Units: µs)
uint32_t cntr Number of compensated measurements recorded.
float temp Temperature of IMU. (Units: °C)
float lin_acc[3] Linear acceleration. (Units: gravity (∼9.81 m/s/s))
float ang_vel[3] Angular velocity. (Units: rad/s)

6.2.1.15 struct Imu0CalibrationThermal

Data results from IMU temperature calibration.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 38

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Data fields

Type Parameter Description
float accel_slope[3] XYZ slopes for accelerometer temperature calibration.

(Units: gravity/ °C)
float accel_offset[3] XYZ offsets for accelerometer temperature calibration.

(Units: gravity)
float accel_-

residual[3]
Average squared residual for accelerometer temperature calibration.
(Units: gravity∧2)

float gyro_slope[3] XYZ slopes for gyroscope temperature calibration.

(Units: (rad/s)/ °C)
float gyro_offset[3] XYZ offsets for gyroscope temperature calibration. (Units: (rad/s)))
float gyro_-

residual[3]
Average squared residual for gyroscope temperature calibration.
(Units: (rad/s)∧2)

6.2.1.16 struct Imu0CalibrationOffset

IMU sensor offset values.

Data fields

Type Parameter Description
char name[16] Type of offset calibration (e.g., static or dynamic).
float accel_offset[3] XYZ accelerometer offsets from accelerometer offset calibration.

(Units: gravity (∼9.81 m/s/s))
float avg_thrust Average thrust found from in flight accelerometer calibration.

(Units: g)
float roll_trim_offset Roll trim offset from in flight accelerometer calibration.

(Units: g)
float pitch_trim_-

offset
Pitch trim offset from in flight accelerometer calibration. (Units: g)

6.2.1.17 struct Barometer0Raw

Raw barometer data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times data was read.
float pressure Atmospheric pressure measurement. (Units: Pa)
float temp Temperature of the sensor. (Units: °C)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.18 struct Sonar0Raw

Raw sonar data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
float range Range measurement. (Units: m)

6.2.1.19 struct Mag0Raw

Raw magnetometer data from the mag0 sensor.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of data packets received.
uint8_t identifier Type of compass sensor.
float field[3] XYZ components of the magnetic field in the sensor frame. (Units:

µT)

6.2.1.20 struct Mag1Raw

Raw magnetometer data from the mag1 sensor.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of data packets received.
uint8_t identifier Type of compass sensor.
float field[3] XYZ components of the magnetic field in the sensor frame. (Units:

µT)

6.2.1.21 struct Mag0Compensated

Mag0 sensor data after compensation.

Data fields

Type Parameter Description
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of data packets received.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 40

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
uint8_t identifier Type of compass sensor.
float field[3] XYZ components of the magnetic field in the sensor frame.

6.2.1.22 struct Mag1Compensated

Mag1 sensor data after compensation.

Data fields

Type Parameter Description
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of data packets received.
uint8_t identifier Type of compass sensor.
float field[3] XYZ components of the magnetic field in the sensor frame.

6.2.1.23 struct Mag0Calibration3D

Data results from Mag0 3D calibration.

Data fields

Type Parameter Description
float matrix[9] Scale parameters of mapping.
float offset[3] XYZ offset of mapping.

6.2.1.24 struct SpektrumRc0Raw

Raw Spektrum RC data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
int32_t protocol Cast to enum: SnRcReceiverMode. RC protocol identifier
uint8_t num_channels Number of RC channels being populated.
uint16_t vals[16] Raw Spektrum channel values.

6.2.1.25 struct ApiRcRaw

RC commands sent through the API.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
int32_t cmd_type Cast to enum: SnRcCommandType. How the command is

interpreted (if possible).
int32_t cmd_options Cast to enum: SnRcCommandOptions. Options used to deviate

from linear mapping.
float cmd[4] Unitless RC-type command in range [-1, 1].

6.2.1.26 struct ApiThrustAttAngVel

Thrust, attitude, and angular velocity commands sent through the API.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
float thrust Thrust.
float qw Attitude quaternion W value.
float qx Attitude quaternion X value.
float qy Attitude quaternion Y value.
float qz Attitude quaternion Z value.
float ang_vel[3] Angular velocity.

6.2.1.27 struct ApiPropsCmd

Received API spin or stop propellers commands.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
uint8_t api_spin_props-

_rcvd
1 if spin-propellers command received, 0 otherwise.

uint8_t api_stop_props-
_rcvd

1 if stop-propellers command received, 0 otherwise.

6.2.1.28 struct RcActive

RC commands for control.

Data fields

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
int32_t source Cast to enum: SnRcCommandSource. Source of the active RC

commands.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
int32_t cmd_type Cast to enum: SnRcCommandType. Specifies how the commands

are interpreted (if possible). Irrelevant if the source is Spektrum RC.
int32_t cmd_options Cast to enum: SnRcCommandOptions. Options used to deviate

from linear mapping.
float cmd[4] Unitless RC-type command in range [-1, 1].

6.2.1.29 struct Camera0FrameInfo

Captured camera frame information from the downward camera.

Data fields

Type Parameter Description
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
uint32_t frame_num Frame number received, starting at 0.
int64_t frame_-

timestamp
Timestamp of frame. (Units: µs)

int64_t preview_-
timestamp

Timestamp of preview callback. (Units: µs)

float exposure Normalized exposure setting used to take the frame.
float gain Normalized gain setting used to take the frame.
float average_-

luminance
Normalized average luminance of the frame.

6.2.1.30 struct OpticFlow0Raw

Downward facing tracker (DFT) data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the struct was logged. (Units: µs)
uint32_t cntr Number of times the data was read.
float pixel_flow[2] Pixel displacement between subsequent image frames. Pixel flow is

in the opposite direction of camera (and therefore vehicle)
movement. (Units: pixels)

int32_t sample_size Number of inliers after calculation of displacement.
float error_sum Error metric, sum of squared error over sample size points.

6.2.1.31 struct OpticFlow0CalibrationTilt

Downfacing camera calibration for tilt angle (optic flow camera yaw calibration).

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 43

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Data fields

Type Parameter Description
float x_factor Tilt factor in X. (Units: pixels/rad)
float y_factor Tilt factor in Y. (Units: pixels/rad)

6.2.1.32 struct Gps0Raw

Raw GPS data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which the data was received. (Units: µs)
uint32_t cntr Number of complete messages received.
int32_t identifier Cast to enum: SnGnssReceiverType. Type of GNSS receiver.
uint32_t num_errors Number of CRC errors.
uint32_t gps_week GPS week number. (Units: weeks)
uint32_t gps_time_sec Time of week. (Units: sec)
uint32_t gps_time_nsec Time of week. (Units: ns)
int32_t latitude Position latitude. (Units: deg∗10e7)
int32_t longitude Position longitude. (Units: deg∗10e7)
float altitude Altitude at mean sea level (MSL). (Units: m)
float lin_vel[3] Velocity of the east-north-up (ENU) frame. (Units: m/s)
uint8_t fix_type Fix type/quality.
uint8_t num_satellites Number of satellites used in the solution.
float horizontal_acc Horizontal accuracy of the position estimate. (Units: m)
float speed_acc Horizontal speed accuracy. (Units: m/s)
uint8_t sv_ids[32] Satellite identification number.
uint8_t sv_cn0[32] Satellite signal strength. (Units: C/N0)

6.2.1.33 struct TrajectoryDataRaw

Raw API data for trajectory control input.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Number of messages received.
int32_t controller Cast to enum: SnPositionController. Desired position controller to

use.
int32_t options Cast to enum: SnTrajectoryOptions. Trajectory options.
float position[3] Desired position for the controller to achieve. (Units: m)
float velocity[3] Desired velocity for the controller to achieve. (Units: m/s)
float acceleration[3] Desired acceleration for controller to use as a feed-forward term.

(Units: m/s/s)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
float yaw Desired gravity aligned yaw angle for the controller to achieve.

(Units: raw)
float yaw_rate Desired gravity aligned yaw angle rate for the controller to achieve.

(Units: raw)

6.2.1.34 struct PosVel

Position and velocity control data.

Data fields

Type Parameter Description
int64_t time Time at which the data was logged. (Units: µs)
uint32_t cntr Number of times the data was logged.
float position_-

estimated[3]
Estimated position of the vehicle with respect to the estimation
frame. (Units: m)

float velocity_-
estimated[3]

Estimated velocity of the vehicle with respect to the estimation
frame. (Units: m/s)

float yaw_estimated Estimated yaw angle of the vehicle with respect to the estimation
frame. (Units: rad)

float estimate_is_-
valid

Whether the estimate is valid.

int32_t position_-
estimate_type

Cast to enum: SnPosEstType. Names the dominant source of the
position estimate.

float R_eg[9] Orientation of the GNSS ENU frame with respect to the estimation
frame.

float gnss_rotation_-
is_valid

Indicates if the rotation between the estimation frame and the GNSS
ENU frame is valid or not.

float t_eg[3] Vector from the origin of the estimation frame to the origin of the
GNSS ENU frame represented with respect to the estimation frame.
If the estimation frame were drift-free, this vector would be zero
over long time scales (could be non-zero over short time scales due
to filtering delays).

float gnss_-
translation_is_-
valid

Indicates if the translation between the estimation frame and the
GNSS ENU frame is valid or not.

int32_t gnss_type Cast to enum: SnGnssReceiverType. Type of GNSS receiver.
float position_-

desired[3]
Desired position of the vehicle with respect to the estimation frame.
(Units: m)

float velocity_-
desired[3]

Desired velocity of the vehicle with respect to the estimation frame.
(Units: m/s)

float yaw_desired Desired yaw of the vehicle with respect to the estimation frame.
(Units: rad)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 45

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.35 struct VioPosVel

VIO position and velocity control data.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Counter that is incremented with each control loop.
float position_-

estimated[3]
Estimated XYZ position. (Units: m)

float velocity_-
estimated[3]

Estimated XYZ velocity. (Units: m/s)

float yaw_estimated Estimated yaw angle. (Units: rad)
float position_-

desired[3]
Desired XYZ position. (Units: m)

float velocity_-
desired[3]

Desired XYZ velocity. (Units: m/s)

float yaw_desired Desired yaw angle. (Units: rad)
uint8_t is_valid Is 1 if the VIO position and velocity data is valid.

6.2.1.36 struct GpsPosVel

GPS position and velocity control data.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Counter that is incremented with each control loop.
int32_t identifier Cast to enum: SnGnssReceiverType. Type of GNSS receiver.
float position_-

estimated[3]
Estimated XYZ position. +X is east, +Y is north, +Z is vertically up
(Units: m)

float velocity_-
estimated[3]

Estimated XYZ velocity. (Units: m/s)

float yaw_estimated Estimated yaw angle of the vehicle’s body-fixed frame with respect
to the East North Up (ENU) frame. (Units: rad)

float position_-
desired[3]

Desired XYZ position. (Units: m)

float velocity_-
desired[3]

Desired XYZ velocity. (Units: m/s)

float yaw_desired Desired yaw angle of the vehicle’s body-fixed frame with respect to
the ENU frame. (Units: rad)

uint8_t is_enabled If enabled (set to 1), this data is populated when the vehicle gets a
GPS lock.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 46

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.37 struct OpticFlowPosVel

Optic flow position and velocity control data.

Data fields

Type Parameter Description
int64_t time Timestamp. (Units: µs)
uint32_t cntr Number of times the data was read.
float position_-

estimated[3]
Estimated XYZ position. (Units: m)

float velocity_-
estimated[3]

Estimated XYZ velocity. (Units: m/s)

float yaw_estimated Estimated yaw angle. (Units: rad)
float position_-

desired[3]
Desired XYZ position. (Units: m)

float velocity_-
desired[3]

Desired XYZ velocity. (Units: m/s)

float yaw_desired Desired yaw angle. (Units: rad)
uint8_t is_valid 1 if the optic flow position and velocity data are valid, otherwise 0.

6.2.1.38 struct EscRaw

Raw ESC data.

Data fields

Type Parameter Description
uint32_t iter Loop iteration in which data was logged.
int64_t time Time at which this data was published. (Units: µs)
uint32_t bytes_tx Number of bytes received from ESCs. (Units: bytes)
uint32_t bytes_rx Number of bytes received from all ESCs. (Units: bytes)
uint32_t errors_rx Number of feedback read errors.
uint32_t packet_number Packet number.
uint8_t packet_cntr[8] Number of control packets received by each ESC.
uint32_t packets_rx[8] Number of packets received from each ESC. (Units: packets)
int16_t rpm[8] Motor RPM.
int8_t power[8] Power applied by the ESC. (Units: %)
float voltage[8] Voltage measured by each ESC. (Units: V)
uint8_t states[8] ESC state.

6.2.1.39 struct VoaData

VOA data.

Data fields

Type Parameter Description
int64_t time Time at which this data was received. (Units: µs)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
uint32_t cntr DSP counter of data received.
uint64_t apps_proc_time Timestamp from the applications processor. (Units: µs)
uint32_t apps_proc_cntr Counter of data sent from the applications processor.
int num_points Number of points used for VOA control.

6.2.1.40 struct VoaStatus

State of VOA processing.

Data fields

Type Parameter Description
int64_t time Timestamp of information (Units: µs)
uint32_t cntr Monotonically increasing counter
uint8_t voa_enabled 1 if VOA is enabled, 0 otherwise.
uint8_t voa_running 1 if VOA is running and has the ability to modify control output, 0

otherwise.
uint8_t voa_active 1 if VOA is currently modifying control output, 0 otherwise.

6.2.1.41 struct RelativeObstacleDistances

Raw obstacle distance information (if available).

Data fields

Type Parameter Description
int64_t time Timestamp of data. (Units: µs)
uint32_t cntr Data log counter.
float relative_-

distances[4]
Array of distances sensed in the body coordinate frame and centered
around the forward +X direction. Each number corresponds to an
angle specified in the parameter file. By default, each number
corresponds to 0.3 radians. (Units: m)

6.2.1.42 struct GpsOrigin

GPS latitude and longitude at the time of initial GPS lock.

Data fields

Type Parameter Description
int64_t time Timestamp of initial GPS lock. (Units: µs)
int32_t origin_latitude Latitude at GPS lock.
int32_t origin_-

longitude
Longitude at GPS lock.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.1.43 struct FiducialMarkerWorldOffsetRaw

Raw world offset computation from fiducial markers.

Data fields

Type Parameter Description
uint64_t time Time at which the struct was logged. (Units: µs)
uint32_t frame_id Camera frame ID used for marker detection.
int64_t frame_-

timestamp_ns
Timestamp of the camera frame used for marker detection. (Units:
ns)

uint32_t num_markers_-
used

Number of marker detections in the frame used in offset
computation.

float yaw_offset_raw Raw Yaw offset. (Units: rad)
float pos_offset_-

raw[3]
Raw XYZ offset (Units: m)

6.2.1.44 struct FiducialMarkerWorldOffsetData

Filtered world offset computation from fiducial markers.

Data fields

Type Parameter Description
uint64_t time Time at which the struct was logged. (Units: µs)
uint32_t num_raw_-

offset_updates
Number of times that the raw offsets were computed.

float pos_offset[3] Vector from origin of marker world frame to origin of Snapdragon
Navigator world frame represented in the Snapdragon Navigator
world frame. (Units: m)

float yaw_offset Yaw component of the rotation from the Snapdragon Navigator
world frame to the marker world frame. (Units: rad)

float pos_world[3] Estimated position represented in the marker world frame. (Units:
m)

float yaw_world Estimated yaw angle represented in the marker world frame. (Units:
rad)

6.2.1.45 struct SimGroundTruth

Simulation ground truth.

Data fields

Type Parameter Description
int64_t time Sim current time. (Units: µs)
float position[3] Ground truth position of the vehicle with respect to the simulation

frame. (Units: m)
float velocity[3] Ground truth velocity of the vehicle with respect to the simulation

frame. (Units: m/s)

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
float R[9] Ground truth orientation of the vehicle-fixed frame with respect to

the simulation frame.

6.2.1.46 struct SnavCachedData

Snapdragon Navigator cached data for the sn_get_flight_data_ptr() function.

Data fields

Type Parameter Description
VersionInfo version_info Version information required to uniquely identify the software and

device.
MvSdkVersion-
Info

mv_sdk_-
version_info

Machine vision (MV) version information.

SensorImuApi-
VersionInfo

sensor_imu_-
api_version_-
info

Version of the sensor_imu API.

GeneralStatus general_status General system state information for debugging system issues.
DataStatus data_status Status of various sensors and estimators.
UpdateRates update_rates System and sensor update rates.
Attitude-
Estimate

attitude_-
estimate

Estimate of the vehicle orientation.

Attitude-
Estimate1

attitude_-
estimate1

Estimate of the vehicle orientation.

Attitude-
Estimate2

attitude_-
estimate2

Estimate of the vehicle orientation.

CpuStats cpu_stats Apps processor CPU status.
Imu0Raw imu_0_raw Inertial measurement unit 0 raw data.
Imu1Raw imu_1_raw Inertial measurement unit 1 raw data.
Imu2Raw imu_2_raw Inertial measurement unit 2 raw data.
Imu0-
Compensated

imu_0_-
compensated

Inertial measurement unit (IMU) data after compensation.

Imu0-
Calibration-
Thermal

imu_0_-
calibration_-
thermal

Data results from IMU temperature calibration.

Imu0-
Calibration-
Offset

imu_0_-
calibration_-
offset

IMU sensor offset values.

Barometer0-
Raw

barometer_0_-
raw

Raw barometer data.

Sonar0Raw sonar_0_raw Raw sonar data.
Mag0Raw mag_0_raw Raw magnetometer data from the mag0 sensor.
Mag1Raw mag_1_raw Raw magnetometer data from the mag1 sensor.
Mag0-
Compensated

mag_0_-
compensated

Mag0 sensor data after compensation.

Mag1-
Compensated

mag_1_-
compensated

Mag1 sensor data after compensation.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

Type Parameter Description
Mag0-
Calibration3D

mag_0_-
calibration_3d

Data results from Mag0 3D calibration.

SpektrumRc0-
Raw

spektrum_rc_0-
_raw

Raw Spektrum RC data.

ApiRcRaw api_rc_raw RC commands sent through the API.
ApiThrustAtt-
AngVel

api_thrust_att_-
ang_vel

Thrust, attitude, and angular velocity commands sent through the
API.

ApiPropsCmd api_props_cmd Received API spin or stop propellers commands.
RcActive rc_active RC commands for control.
Camera0-
FrameInfo

camera_0_-
frame_info

Captured camera frame information from the downward camera.

OpticFlow0-
Raw

optic_flow_0_-
raw

Downward facing tracker (DFT) data.

OpticFlow0-
CalibrationTilt

optic_flow_0_-
calibration_tilt

Downfacing camera calibration for tilt angle (optic flow camera yaw
calibration).

Gps0Raw gps_0_raw Raw GPS data.
TrajectoryData-
Raw

trajectory_data-
_raw

Raw API data for trajectory control input.

PosVel pos_vel Position and velocity control data.
VioPosVel vio_pos_vel VIO position and velocity control data.
GpsPosVel gps_pos_vel GPS position and velocity control data.
OpticFlowPos-
Vel

optic_flow_-
pos_vel

Optic flow position and velocity control data.

EscRaw esc_raw Raw ESC data.
VoaData voa_data VOA data.
VoaStatus voa_status State of VOA processing.
Relative-
Obstacle-
Distances

relative_-
obstacle_-
distances

Raw obstacle distance information (if available).

GpsOrigin gps_origin GPS latitude and longitude at the time of initial GPS lock.
Fiducial-
MarkerWorld-
OffsetRaw

fiducial_-
marker_world-
_offset_raw

Raw world offset computation from fiducial markers.

Fiducial-
MarkerWorld-
OffsetData

fiducial_-
marker_world-
_offset_data

Filtered world offset computation from fiducial markers.

SimGround-
Truth

sim_ground_-
truth

Simulation ground truth.

6.2.2 Enumeration Type Documentation

6.2.2.1 enum SnMode

Mode ID codes returned by querying the flight system mode.

Enumerator:

SN_SENSOR_ERROR_MODE Error – flight is not possible in current state.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

SN_UNDEFINED_MODE Mode is not defined in this list.
SN_WAITING_FOR_DEVICE_TO_CONNECT Waiting for an RC or DroneController to connect.
SN_EMERGENCY_KILL_MODE Propellers were stopped – Most likely due to a crash.
SN_EMERGENCY_LANDING_MODE Low fixed-thrust emergency descent.
SN_THERMAL_IMU_CALIBRATION_MODE Thermal accel/gyro calibration.
SN_STATIC_ACCEL_CALIBRATION_MODE Static accel offset calibration.
SN_OPTIC_FLOW_CAM_YAW_CALIBRATION_MODE Optic flow camera yaw calibration.
SN_MAGNETOMETER_CALIBRATION_MODE Compass (magnetometer) calibration.
SN_CALIBRATION_SUCCESS Last active calibration was successful.
SN_CALIBRATION_FAILURE Last active calibration was not successful.
SN_ESC_RPM_MODE API controls the ESC RPMs.
SN_ESC_PWM_MODE API controls the ESC PWMs.
SN_RATE_MODE Thrust, roll rate, pitch rate, yaw rate; does not auto-stabilize.
SN_THRUST_ANGLE_MODE Thrust, roll angle, pitch angle, yaw rate.
SN_ALT_HOLD_MODE Vertical velocity, roll angle, pitch angle, yaw rate.
SN_THRUST_GPS_HOVER_MODE Thrust control with lateral position hold using GPS.
SN_GPS_POS_HOLD_MODE Body-relative 3D velocity and yaw rate using GPS.
SN_OPTIC_FLOW_POS_HOLD_MODE Body-relative 3D velocity and yaw rate using optic flow.
SN_VIO_POS_HOLD_MODE Body-relative 3D velocity and yaw rate using VIO.
SN_THRUST_ATT_ANG_VEL_MODE Thrust, attitude, and angular velocity.
SN_PRESSURE_LANDING_MODE Vertical velocity-controlled descent with zero roll/pitch.
SN_PRESSURE_GPS_LANDING_MODE 3D velocity-controlled descent.
SN_GPS_GO_HOME_MODE 3D velocity-controlled return to home position.
SN_ALT_HOLD_LOW_ANGLE_MODE Vertical velocity, roll angle, pitch angle, and yaw rate with

limits on roll and pitch angles.
SN_POS_HOLD_MODE Body-relative 3D velocity and yaw rate.

6.2.2.2 enum SnInputCommandType

Input command types.

Enumerator:

SN_INPUT_CMD_TYPE_NONE No input.
SN_INPUT_CMD_TYPE_RC RC-style input commands.
SN_INPUT_CMD_TYPE_API_THRUST_ATT_ANG_VEL Thrust attitude angular velocity input

commands from the API.
SN_INPUT_CMD_TYPE_API_ESC ESC input commands from the API.
SN_INPUT_CMD_TYPE_API_TRAJECTORY_CONTROL Trajectory control commands from the API.

6.2.2.3 enum SnRcCommandSource

RC command input source.

Enumerator:

SN_RC_CMD_NO_INPUT No input.
SN_RC_CMD_SPEKTRUM_INPUT Spektrum.
SN_RC_CMD_API_INPUT RC commands from API.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 52

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.2.4 enum SnRcCommandType

RC command. This enum specifies how the dimensionless commands sent by the sn_send_rc_command()
function are interpreted and indirectly selects the desired operation mode. The actual mode can be verified
with the sn_get_mode() function.

Enumerator:

SN_RC_RATES_CMD Command pitch rate, negative roll rate, thrust magnitude, and yaw rate.
SN_RC_THRUST_ANGLE_CMD Command pitch angle, negative roll angle, thrust magnitude, and

yaw rate.
SN_RC_ALT_HOLD_CMD Command pitch angle, negative roll angle, Z speed, and yaw rate.
SN_RC_THRUST_ANGLE_GPS_HOVER_CMD Command pitch angle, negative roll angle, thrust

magnitude, and yaw rate; holds lateral position using GPS when roll and pitch commands are
zero.

SN_RC_GPS_POS_HOLD_CMD Command vehicle-relative X and Y speeds, Z speed, and yaw rate
using GPS.

SN_RC_OPTIC_FLOW_POS_HOLD_CMD Command vehicle-relative X and Y speeds, Z speed, and
yaw rate using optic flow.

SN_RC_VIO_POS_HOLD_CMD Command vehicle-relative X and Y speeds, Z speed, and yaw rate
using visual inertial odometry (VIO).

SN_RC_ALT_HOLD_LOW_ANGLE_CMD Command pitch angle, negative roll angle, Z speed, and
yaw rate with a maximum tilt angle limit.

SN_RC_POS_HOLD_CMD Command vehicle-relative X and Y speeds, Z speed, and yaw rate using
any available sensors.

SN_RC_NUM_CMD_TYPES Do not use – Reserved to hold the number of RC command types.

6.2.2.5 enum SnPositionController

Position contoller. This enum contains supported position controllers to specify how to interpret position,
angle, and their derivatives into the sn_send_trajectory_tracking_command() function. Each position
controller uses an appropriate estimate of position and programs that use these controllers need to ensure
that the correct reference frame is used.

Enumerator:

SN_POSITION_CONTROL_GPS GPS-based position control.
SN_POSITION_CONTROL_VIO VIO-based position control.
SN_POSITION_CONTROL_OF Optic flow-based position control.
SN_POSITION_CONTROL_NUM_TYPES Do not use – Reserved for the number of position control

types.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.2.6 enum SnTrajectoryOptions

Options for trajectory tracking to be used in the sn_send_trajectory_tracking_command() function.

Enumerator:

SN_TRAJ_DEFAULT Default options.
SN_TRAJECTORY_OPTIONS_NUM Do not use – Reserved for the number of trajectory options.

6.2.2.7 enum SnRcCommandOptions

RC command options. The options can be OR-ed to form hybrid options

Enumerator:

RC_OPT_LINEAR_MAPPING Linear control (default).
RC_OPT_ENABLE_DEADBAND Enable deadband.
RC_OPT_COMPLIANT_TRACKING Enables the flight controller to modify and smooth input

commands for feasibility. Obstacle avoidance features require this bit to be set, but commands
might not not be tracked precisely if this flag is set. Use this flag when stick inputs are used and
disable it to track motion precisely.

RC_OPT_DEFAULT_RC Default RC.
RC_OPT_TRIGGER_LANDING Trigger landing. The vehicle determines which landing mode is

appropriate based on which sensors are available and what mode is active.

6.2.2.8 enum SnPropsState

Collective state of all of the propellers – Identification code returned by querying the flight system propeller
state.

Enumerator:

SN_PROPS_STATE_UNKNOWN State of propellers is unknown.
SN_PROPS_STATE_NOT_SPINNING All propellers are not spinning.
SN_PROPS_STATE_STARTING Propellers are starting to spin.
SN_PROPS_STATE_SPINNING All propellers are spinning.

6.2.2.9 enum SnDataStatus

Identification code returned by querying the sensor data status.

Enumerator:

SN_DATA_INVALID Sensor data is invalid.
SN_DATA_VALID Sensor data is valid.
SN_DATA_NOT_INITIALIZED Sensor data has not been initialized.
SN_DATA_STUCK Sensor data is unchanging.
SN_DATA_TIMEOUT Sensor data has not been updated past the data timeout threshold.
SN_DATA_UNCALIBRATED Sensor data has not been calibrated.
SN_DATA_OFFSET_UNCALIBRATED Sensor data is missing offset calibration.
SN_DATA_TEMP_UNCALIBRATED Sensor data is missing temperature calibration.
SN_DATA_STARTING Sensor is acquiring additional samples.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

SN_DATA_STATUS_UNAVAILABLE Sensor data status unavailable.
SN_DATA_NOT_ORIENTED Sensor data missing the orientation parameter.
SN_DATA_NO_LOCK Sensor data unable to lock on.
SN_DATA_WARNING Sensor is in a warning state.
SN_DATA_TRANSITIONING Sensor data is transitioning.

6.2.2.10 enum SnMotorState

Individual state of a motor – Identification code returned by querying the state feedback from ESCs.

Enumerator:

SN_MOTOR_STATE_UNKNOWN State of motor is unknown.
SN_MOTOR_STATE_NOT_SPINNING Motor is not spinning.
SN_MOTOR_STATE_STARTING Motor is starting to spin.
SN_MOTOR_STATE_SPINNING_FORWARD Motor is spinning in the forward direction.
SN_MOTOR_STATE_SPINNING_BACKWARD Motor is spinning in the backward direction.

6.2.2.11 enum SnCalibStatus

Identification code returned by querying the sensor calibration status.

Enumerator:

SN_CALIB_STATUS_NOT_CALIBRATED Calibration data does not exist.
SN_CALIB_STATUS_CALIBRATION_IN_PROGRESS Calibration procedure is in progress.
SN_CALIB_STATUS_CALIBRATED Calibration data exists.

6.2.2.12 enum SnRcReceiverMode

Spektrum data transmission mode. This value is used to request binding and display the current mode.

Enumerator:

SN_RC_RECEIVER_MODE_UNKNOWN Unknown DSM mode.
SN_SPEKTRUM_MODE_DSM2_22 DSM2 22 ms (6-channel maximum, every 22 ms).
SN_SPEKTRUM_MODE_DSM2_11 DSM2 11 ms (9-channel maximum, complete packet every 22

ms).
SN_SPEKTRUM_MODE_DSMX_22 DSMX 22 ms (6-channel maximum, every 22 ms).
SN_SPEKTRUM_MODE_DSMX_11 DSMX 11 ms (9-channel maximum, complete packet every 22

ms).

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55

Qualcomm® Snapdragon Navigator™ Developer Guide Snapdragon Navigator Interface

6.2.2.13 enum SnGnssReceiverType

Supported GNSS receiver types.

Enumerator:

SN_GNSS_RECEIVER_TYPE_UNKNOWN Unknown receiver.
SN_GNSS_RECEIVER_TYPE_CSR_SSV CSR receiver.
SN_GNSS_RECEIVER_TYPE_QC_WGR Qualcomm WGR receiver.
SN_GNSS_RECEIVER_TYPE_UBLOX U-blox receiver.

6.2.2.14 enum SnPosEstType

Position estimate type.

Multiple sensors can be used to estimate the position. This enum specifies the dominant source of the
estimate used to determine the expected performance level.

Enumerator:

SN_POS_EST_TYPE_NONE No position estimate is available.
SN_POS_EST_TYPE_GPS GPS is the dominant source of position estimate.
SN_POS_EST_TYPE_VIO VIO is the dominant source of position estimate.
SN_POS_EST_TYPE_DFT Downward facing tracker (DFT) is the dominant source of position

estimate.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56

A Troubleshooting

A.1 Propellers are not spinning when commanded

A.1.1 Calling the sn_start_props() function

Ensure that the flight controller is not in SN_WAITING_FOR_DEVICE_TO_CONNECT mode.

The sn_start_props() function only takes effect if the flight controller is receiving data and has not timed out.

Propellers only start spinning if Snapdragon Navigator has determined that it is safe and appropriate. Many
conditions can cause Snapdragon Navigator to deem it unsafe or inappropriate to start the propellers. Refer
to Qualcomm Snapdragon Navigator User Guide (80-P4698-18) to review these conditions.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57

B Terms and Conditions

THIS TERMS AND CONDITIONS OF USE (THE “AGREEMENT”) IS A LEGALLY BINDING
AGREEMENT BETWEEN QUALCOMM TECHNOLOGIES, INC. ("QTI") AND YOU OR THE LEGAL
ENTITY YOU REPRESENT (“You” or “Your”). QTI IS WILLING TO PROVIDE THESE INSTRUCTION
SETS AND ANY ASSOCIATED DOCUMENTATION (COLLECTIVELY REFERRED TO AS THE
“INSTRUCTIONS”) TO YOU ONLY ON THE CONDITION THAT YOU ACCEPT AND AGREE TO ALL
OF THE TERMS AND CONDITIONS IN THIS AGREEMENT. BY DOWNLOADING AND USING THE
INSTRUCTIONS YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND
IT AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO
THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE INSTRUCTIONS TO YOU. IF
YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE THE USE OF THE
INSTRUCTIONS AND YOU SHALL NOT USE THE INSTRUCTIONS OR RETAIN ANY COPIES OF THE
INSTRUCTIONS. ANY USE OR POSSESSION OF THE INSTRUCTIONS BY YOU IS SUBJECT TO THE
TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

BY USING THE INSTRUCTIONS, YOU REPRESENT, WARRANT AND CERTIFY THAT: YOU ARE AN
AUTHORIZED REPRESENTATIVE OF THE LEGAL ENTITY YOU REPRESENT; YOU HAVE READ
THIS AGREEMENT AND UNDERSTAND IT, INCLUDING THE CIVIL CODE SECTION BELOW; YOU
HAVE THE AUTHORITY TO BIND THE LEGAL ENTITY YOU REPRESENT TO THE TERMS AND
CONDITIONS OF THIS AGREEMENT; AND YOU AGREE TO BE BOUND BY ITS TERMS AND
CONDITIONS.

1. DESIGN OF YOUR PRODUCTS. You acknowledge that QTI has had and will have no participation in or
control over – and no responsibility for – the design or assembly of Your products, including drones, the
integration of any of the attached Materials into Your products, including drones, or the sale or marketing of
Your products, including drones.

2. ASSUMPTION OF RISK. You acknowledge that the operation of the Materials, alone or in a product,
including drones, is a potentially dangerous activity and may result in significant harm to property or injury or
death to persons. You agree to include on Your products prominent warnings of such risks, as may be required
by law or regulation and as may be necessary or prudent to advise users of such risks. You, and not QTI,
assume all risks and liabilities that may result from the use of the Materials, whether or not modified by You
and whether or not implemented in connection with a reference design provided by QTI or any of its Affiliates.

3. SAFETY PRECAUTIONS AND PROCEDURES. You will operate Your products, including drones, in
compliance with any and all safety procedures and precautions as are reasonable for the operation of Your
products, including drones. This may include using blade guards on drones or operating any drone sufficiently
far away from people, property or other hazardous structures e.g., electricity lines. In addition, You will operate
Your products, including drones, in compliance with all applicable laws and regulations, including safety and
operational guidelines, that apply to the use of Your products, including drones.

4. WARRANTY. THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAWS,
QTI AND ITS AFFILAITES EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE,
FITNESS FOR A PARTICULAR PURPOSE AND WARRANTIES THAT THE MATERIALS ARE FREE
FROM THE RIGHTFUL CLAIM OF ANY THIRD PARTY, BY WAY OF INFRINGEMENT OR THE LIKE.
NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY QTI OR ITS AUTHORIZED
REPRESENTATIVES SHALL CREATE OR EXTEND ANY WARRANTY.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58

Qualcomm® Snapdragon Navigator™ Developer Guide Terms and Conditions

5. LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI OR ANY OF ITS AFFILIATES BE LIABLE
TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING, BUT
NOT LIMITED TO, ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES
ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT OR THE USE OR INABILITY TO
USE, OR THE DELIVERY OF OR FAILURE TO DELIVER THE MATERIALS EVEN IF QTI OR ITS
AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. QTI’S TOTAL,
CUMULATIVE LIABILITY FOR DIRECT DAMAGES ARISING FROM OR IN CONNECTION WITH
THIS AGREEMENT, WILL BE LIMITED TO A TOTAL AMOUNT OF ONE HUNDRED UNITED STATES
DOLLARS (US $100). MULTIPLE CLAIMS WILL BE AGGREGATED TO DETERMINE THE
SATISFACTION OF THIS LIMIT.

6. INDEMNITY. You agree to defend, indemnify and hold QTI, its Affiliates, employees, directors, agents,
licensors, successors and assignees (each an “Indemnified Party”) harmless from any and all claims, penalties,
demands, causes of action, liabilities, lawsuits, or damages, including attorneys’ fees and costs, that result from
or relate to the Materials or any product, including drones, made, used, sold, imported, exported, or distributed
by You which uses the Materials or any part or derivative work thereof, even where such product uses the
Materials without modification and even where the design of such product is identical to the design of any
reference product, including drones. This indemnification includes, without limitation, any claims for damages
to property or injury or death to persons and any investigation, enforcement action, civil penalty, or other action
conducted or cost imposed by the United States Federal Aviation Administration (FAA) or any governmental
entity of the United States or any other government. If any third party asserts a claim or initiates an action
against an Indemnified Party for which You are responsible under this Section, QTI shall promptly notify You
when it becomes aware of such claim or action, provided, however, that any delay in notification shall not
relieve You from Your indemnification obligations under this Agreement. QTI shall have the right to participate
in the defense of such claim or action, including any related settlement negotiations. No such claim or action
may be settled or compromised without QTI’s express written consent, which may be conditioned upon the
execution of a release of all claims against the Indemnified Parties by the party bringing such claim or action.

7. GENERAL RELEASE.
(a) Release. In consideration of QTI’s allowing You to use the Materials, You on behalf of Yourself, Your,

affiliates, agents, successors and assigns, hereby fully and forever release and discharge QTI (and all of
its officers, directors, employees, agents, successors, assigns, control persons, subsidiaries and Affiliated
companies, together the “Released Parties”), from any and all claims, demands, liabilities, obligations,
responsibilities, suits, actions and causes of action against any of the Released Parties, whether liquidated
or unliquidated, fixed or contingent, known or unknown, presently existing or which, through the passage
of time, might arise in the future, related to or arising out of Your use of the Materials.

(b) Waiver and Acknowledgement. You hereby expressly waives all rights under Section 1542 of the Civil
Code of the State of California, and under any and all similar laws of any governmental entity. You
hereby confirm that you are aware that said Section 1542 of the Civil Code provides as follows: “A
general release does not extend to claims which the creditor does not know or suspect to exist in his favor
at the time of executing the release, which if known by him must have materially affected his settlement
with the debtor.”

8. INSURANCE. If You make or distribute drones, or participate in making or distributing drones, You agree to
and will maintain (throughout the time You are using any of the Materials in connection with such drones)
insurance providing adequate coverage for potential product liability, personal injury, property damage, and
privacy claims and litigation associated with such drones and/or Materials.

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59

C References

C.1 Related Documents

Title Number
Qualcomm Technologies
Qualcomm Snapdragon Navigator User Guide 80-P4698-18
Qualcomm Snapdragon Navigator Example API Programs https://github.com/ATLFlight/snav_

api_examples

C.2 Acronyms and Terms

Acronym or term Definition
ESC Electronic speed controllers
RC Radio controller
VIO Visual inertial odometry
VOA Visual obstacle avoidance

80-P4698-20 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 60

https://github.com/ATLFlight/snav_api_examples
https://github.com/ATLFlight/snav_api_examples

	Qualcomm® Snapdragon Navigator™ Developer Guide
	Contents
	List of Tables

	1 Introduction
	1.1 Purpose
	1.2 Conventions

	2 Functional Overview
	3 Getting Started
	3.1 Installing the Snapdragon Navigator Developer Files

	4 Develop an Application
	4.1 Writing the Source
	4.1.1 Understanding the RC Command Interface

	4.2 Building the Source
	4.2.1 On Target
	4.2.2 Cross Compilation with qrlSDK

	4.3 Running the Executable

	5 Deprecated List
	6 Snapdragon Navigator Interface
	6.1 Commands
	6.1.1 Function Documentation
	6.1.1.1 sn_update_data
	6.1.1.2 sn_spin_props
	6.1.1.3 sn_stop_props
	6.1.1.4 sn_start_static_accel_calibration
	6.1.1.5 sn_get_static_accel_calibration_status
	6.1.1.6 sn_start_dynamic_accel_calibration
	6.1.1.7 sn_get_dynamic_accel_calibration_status
	6.1.1.8 sn_start_imu_thermal_calibration
	6.1.1.9 sn_get_imu_thermal_calibration_status
	6.1.1.10 sn_start_optic_flow_camera_yaw_calibration
	6.1.1.11 sn_get_optic_flow_camera_yaw_calibration_status
	6.1.1.12 sn_start_magnetometer_calibration
	6.1.1.13 sn_get_magnetometer_calibration_status
	6.1.1.14 sn_send_esc_rpm
	6.1.1.15 sn_send_esc_pwm
	6.1.1.16 sn_send_rc_command
	6.1.1.17 sn_apply_cmd_mapping
	6.1.1.18 sn_get_enum_string
	6.1.1.19 sn_get_cmd_name
	6.1.1.20 sn_get_dimensioned_units
	6.1.1.21 sn_get_min_value
	6.1.1.22 sn_get_max_value
	6.1.1.23 sn_send_thrust_att_ang_vel_command
	6.1.1.24 sn_send_trajectory_tracking_command
	6.1.1.25 sn_set_battery_voltage
	6.1.1.26 sn_get_flight_data_ptr
	6.1.1.27 sn_set_led_colors
	6.1.1.28 sn_get_esc_state_feedback
	6.1.1.29 sn_get_est_accel_bias
	6.1.1.30 sn_get_est_gyro_bias
	6.1.1.31 sn_is_gps_enabled

	6.2 Datatypes
	6.2.1 Data Structure Documentation
	6.2.1.1 struct VersionInfo
	6.2.1.2 struct MvSdkVersionInfo
	6.2.1.3 struct SensorImuApiVersionInfo
	6.2.1.4 struct GeneralStatus
	6.2.1.5 struct DataStatus
	6.2.1.6 struct UpdateRates
	6.2.1.7 struct AttitudeEstimate
	6.2.1.8 struct AttitudeEstimate1
	6.2.1.9 struct AttitudeEstimate2
	6.2.1.10 struct CpuStats
	6.2.1.11 struct Imu0Raw
	6.2.1.12 struct Imu1Raw
	6.2.1.13 struct Imu2Raw
	6.2.1.14 struct Imu0Compensated
	6.2.1.15 struct Imu0CalibrationThermal
	6.2.1.16 struct Imu0CalibrationOffset
	6.2.1.17 struct Barometer0Raw
	6.2.1.18 struct Sonar0Raw
	6.2.1.19 struct Mag0Raw
	6.2.1.20 struct Mag1Raw
	6.2.1.21 struct Mag0Compensated
	6.2.1.22 struct Mag1Compensated
	6.2.1.23 struct Mag0Calibration3D
	6.2.1.24 struct SpektrumRc0Raw
	6.2.1.25 struct ApiRcRaw
	6.2.1.26 struct ApiThrustAttAngVel
	6.2.1.27 struct ApiPropsCmd
	6.2.1.28 struct RcActive
	6.2.1.29 struct Camera0FrameInfo
	6.2.1.30 struct OpticFlow0Raw
	6.2.1.31 struct OpticFlow0CalibrationTilt
	6.2.1.32 struct Gps0Raw
	6.2.1.33 struct TrajectoryDataRaw
	6.2.1.34 struct PosVel
	6.2.1.35 struct VioPosVel
	6.2.1.36 struct GpsPosVel
	6.2.1.37 struct OpticFlowPosVel
	6.2.1.38 struct EscRaw
	6.2.1.39 struct VoaData
	6.2.1.40 struct VoaStatus
	6.2.1.41 struct RelativeObstacleDistances
	6.2.1.42 struct GpsOrigin
	6.2.1.43 struct FiducialMarkerWorldOffsetRaw
	6.2.1.44 struct FiducialMarkerWorldOffsetData
	6.2.1.45 struct SimGroundTruth
	6.2.1.46 struct SnavCachedData

	6.2.2 Enumeration Type Documentation
	6.2.2.1 SnMode
	6.2.2.2 SnInputCommandType
	6.2.2.3 SnRcCommandSource
	6.2.2.4 SnRcCommandType
	6.2.2.5 SnPositionController
	6.2.2.6 SnTrajectoryOptions
	6.2.2.7 SnRcCommandOptions
	6.2.2.8 SnPropsState
	6.2.2.9 SnDataStatus
	6.2.2.10 SnMotorState
	6.2.2.11 SnCalibStatus
	6.2.2.12 SnRcReceiverMode
	6.2.2.13 SnGnssReceiverType
	6.2.2.14 SnPosEstType

	A Troubleshooting
	A.1 Propellers are not spinning when commanded
	A.1.1 Calling the sn_start_props() function

	B Terms and Conditions
	C References
	C.1 Related Documents
	C.2 Acronyms and Terms

