

HOME AUTOMATION WITH THE DRAGONBOARD 410C 1

Home Automation with the DragonBoard™ 410c Development Kit
Written by: Aswin Sivaraman, Matthew Kneiser, Spencer Williams

Qualcomm Technologies, Inc.

Now it is your turn to use the DragonBoard 410c! The board is currently flashed with a Linux-
based operating system (Debian 15.04), and the LXDE (Lightweight X11 Desktop Environment).
If you would like to learn how to switch your board’s operating system, consult the Appendix.

Goal
The aim of this workshop is to familiarize students with the Python scripting language, the
OpenCV (Open Source Computer Vision) library, the Linux operating system, and the
DragonBoard 410c. Participants will create a small Python program which utilizes a USB
webcam for a variety of applications. These include: taking a picture, saving a picture, displaying
a live video feed from the webcam, and performing facial recognition. We will be recreating the
basic functions of a “smart security/surveillance camera”.

Phase 0: Overview

DragonBoard Overview

1. (J8) Low Speed Expansion Connector
2. APQ8016 Qualcomm® Snapdragon™
 Processor
3. (U9) Power Management PMIC
4. (J7) Analog Expansion Connector
5. WLAN/Bluetooth/GPS
6. (J1) Power Jack
7. (J5) uSD Card Socket
8. (J6) HDMI Type-A Port
9. (J9) High Speed Connector
10. (J4) Micro USB Type B Connector
11. Bluetooth/WLAN LED’s
12. (J3) USB Host2 Connector
13. User LED’s 1-4
14. (J2) USB Host1 Connector
15. (S3-4) Vol+/Vol- Buttons
16. (S2) Power Button
17. Bluetooth/WLAN Antenna
18. GPS Antenna
19. (S6) Boot Switches

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc.
These materials are provided on an “as-is” basis without warranty of any kind. Qualcomm Technologies, Inc.

specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 2

Power Button

There is a power button on the DragonBoard 410c. It is labeled S2 on the board. This button
does not turn the power off. Rather, it operates in a similar fashion to a “lock button” on a
smartphone. Keep in mind that the DragonBoard 410c is built on a smartphone platform, so
many mechanisms and concepts are similar to smartphones.

To turn off the device power, simply unplug the power adapter cable from the board. You will
not need to use this button at any point during the workshop.

Review of UNIX Commands

The following commands will be used for this workshop. Within this handout, UNIX commands
will be indicated through a terminal (command line) window, as shown below:

Terminal

sudo apt-get install –y gedit

gedit some_file.txt &

The above commands are an example of something you would type into the command line.

These are two, separate commands. To execute a command, press the Â key. Please
wait for a command to complete before entering the next command.

When you run a command in the terminal, it will instantiate a process, or program. To forcefully

quit any program, you may press the Ç+C keys.

All code will be written and saved using text-editor gedit. To save any changes made to code

written in this workshop, press the Ç+S keys, or use the mouse to click ‘Save’.

To switch between any open windows within the operating system, press the Å+Ê keys.

For example, if you have both gedit and the UXTerm (terminal window) open, you may

alternate between these two windows using Å+Ê.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 3

Phase 1: Setup

Hardware Setup

In this phase, you will configure the DragonBoard 410c for the purposes of this workshop by
setting up a wireless Internet connection and installing software packages in the UNIX terminal.
To get started with the DragonBoard 410c, follow these steps in order:

1. Connect the HDMI monitor, USB keyboard, and USB mouse. Refer to the diagram shown
in Phase 0 if you need help identifying the right ports. Do not power the DragonBoard
410c yet.

2. Power on your HDMI monitor while the DragonBoard 410c is still unpowered.
3. On the backside of the board, verify that the four S6 switches are set to 0-0-1-0, as

shown below. This will enable “USB Host” only. The other controls are not needed for
the workshop, as the operating system is already loaded onto the board.

4. Only after all peripherals from Step 1 are connected, plug in the provided power
adapter.

5. Wait for the onboard LED lights to flash, and you should see the booting up on the
monitor after a few seconds.

Wireless Network Setup

Parts of this workshop will require access to the Internet, so now you will configure the wireless
network connection. On first boot, you should see a wireless network indicator in the bottom
right corner, as shown below (two squares with an x between them).

HOME AUTOMATION WITH THE DRAGONBOARD 410C 4

Click on the wireless network indicator and select the appropriate wireless network. Ask your
workshop administrators to provide the network information.

Enter the network credentials (if applicable) at the prompt, and click ‘Connect’.

The network may require visiting a webpage for additional authentication. Click the browser
icon in the bottom left corner (looks like a map), and try accessing a webpage.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 5

If you run into issues configuring the wireless network, check out the ‘Troubleshooting Wi-Fi
Connection Issues’ appendix at the end of this document, or ask for help.

Installing New Software

We’ll need to install a few software packages for this workshop. First, we will install gedit, a
popular and easy-to-use Linux text editor. Open a terminal window by clicking the ‘Start’
button in the bottom-left corner, and select System Tools → UXTerm (or LXTerminal or XTerm).

When the terminal window comes up, type in the following commands in the exact order that
follows:

Terminal

sudo apt-get update -y

sudo apt-get upgrade -y

sudo apt-get install -y gedit

Each of the above UNIX commands will take several minutes to complete. Wait for each
command to complete before typing in the next command.

Logistics

The DragonBoard 410c comes with two USB ports on it. In this workshop, you will be using a
USB mouse, USB keyboard, and USB webcam, for a total of three devices. The DragonBoard
410c only comes with two onboard USB ports, so you will need to alternate between the mouse
and webcam on the same port.

The keyboard is the most important peripheral. Almost everything in this workshop can be
done using only the keyboard, so it is recommended that you use the same port for both the

HOME AUTOMATION WITH THE DRAGONBOARD 410C 6

mouse and webcam. In the next step, we will see how to use the keyboard for everything and
remove the need for a mouse altogether.

You will now create and enter a new directory, or file folder, for this workshop. With the
terminal window you had previous opened, enter the following command:

Terminal

mkdir ~/workshop

cd ~/workshop

Installing the OpenCV Library

Before proceeding to write Python code, you will need to install the OpenCV framework, which
will allow us to interact with the USB webcam and manipulate the image. To begin, run this
command in your terminal window to install OpenCV for Python:

Terminal

sudo apt-get install -y python-opencv

To ensure that it installed successfully, open a Python interpreter and try to import the OpenCV
library. To open a Python interpreter, simply enter in the terminal window:

Terminal

python

You will now see an output similar to the following, succeeded by three arrows pointing to the
right (>>>).

Example Output

Python 2.7.9 (default Mar 1 2015, 12:52:23)

[GCC 4.9.2] on linux2

Type “help”, “copyright”, “credits” or “license” for more

information.

Whenever the three arrows (>>>) are present, your terminal window is operating within the
Python interpreter. To try importing OpenCV, enter the following command inside the
interpreter:

Terminal > Python Interpreter

>>> import cv2

HOME AUTOMATION WITH THE DRAGONBOARD 410C 7

If the import fails, an error message will appear stating “ImportError: No module named cv2”. If
you see this, please contact your workshop administrators to help with installing OpenCV.

You will need to exit the Python interpreter to return to the UNIX terminal. To do so, press the

Ç+D keys, or simply type in:

Terminal > Python Interpreter

>>> exit()

Cascade Classifier Theory

We will be using the OpenCV cascade classifier to get facial recognition working. This classifier
will break down the task of detecting faces into various stages. For each stage, it does a very
rough and quick test. If that passes, it does a slightly more detailed test, and so on. The
algorithm may have 30-50 of these stages or cascades, and it will only detect a face if all stages
pass. The advantage is that the majority of the pictures will return negative during the first few
stages, which means the algorithm won’t waste time testing all 6,000 features on it. Instead of
taking hours, face detection can now be done in real time.

Though the theory may sound complicated, in practice it is quite easy. The cascades themselves
are just XML files that contain OpenCV data used to detect objects. You initialize your code with
the cascade you want, and then it does the work for you. Since face detection is such a
common case, OpenCV comes with a number of built-in cascades for detecting everything from
faces to eyes to hands and legs. There are even cascades for non-human things.

Obtaining the Cascade Classifier

We will be using the Haar Cascade Frontal Face Classifier for this workshop. To download the
XML file for this workshop, enter the following command:

Terminal

wget http://pulse.ece.illinois.edu/2016/frontalface.xml

This will download the XML file which will be used later for facial recognition. To verify that the
file is downloaded into your folder, run the “ls” utility, which lists the contents of your current
folder:

Terminal

ls –lh

The contents of the directory will be shown as follows:

HOME AUTOMATION WITH THE DRAGONBOARD 410C 8

Example Output

frontalface.xml

Phase 2: Playing with OpenCV

Take a webcam snapshot

To begin, we will write a Python program which will read in a single image frame from the USB
webcam and display this frame on a new window. You will need to create a Python source file
using your text editor, gedit. To do so, enter the following command in your terminal:

Terminal

gedit take_picture.py &

This should now open the gedit text editor with the name of your new file shown in the top
pane, like so:

HOME AUTOMATION WITH THE DRAGONBOARD 410C 9

In Python, code blocks (aka functions) are defined by their indentation. It is important that you
properly and consistently indent your code. Any differences in spacing will result in a program
error.
Also in Python, if a line begins with the “#” symbol, it is a comment. Comments are merely
included in code to make readability easier, and are therefore optional. In other words, you can
skip typing out the bolded blue text if you’d like. Enter the following code into your text editor,
line by line:

gedit take_picture.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

 # Exit the program

 sys.exit(1)

Read in the next frame

retval, frame = vc.read()

Show the frame to the user

cv2.imshow("DragonBoard 410c Workshop", frame)

Exit program after waiting indefinitely for a pressed key

cv2.waitKey(0)

Save your code (Ç+S or click ‘Save’), then exit the text editor program (Ç+W or

click the “X” on the top-right of the window).

After returning to your terminal window, try executing your new program by running this
command:

Terminal

HOME AUTOMATION WITH THE DRAGONBOARD 410C 10

python take_picture.py

If it works correctly, you should see a picture taken from the webcam appear in a new window.
To close the window, simply press any button on the keyboard. You now have your first
functional Python program!

HOME AUTOMATION WITH THE DRAGONBOARD 410C 11

Save a webcam snapshot to an image file

We can extend the program we wrote in the last step to save the image that the webcam took
to a file. Copy your previous file to a new one, and open the new file up in your text editor.
Enter the following two commands:

Terminal

cp take_picture.py save_picture.py

gedit save_picture.py &

You have now opened a second Python source file, whose contents are exactly that of your first
program. Edit this file in gedit to include some new lines of code. Note that:

 New lines of code will be indicated with a green background.
 Modified lines of code will be indicated with a yellow background.
 Removed lines of code will be indicated with a red background and a strikethrough.

gedit save_picture.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

IMAGE_FILE = “output.jpg”

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

 # Exit the program

 sys.exit(1)

Read in the next frame

retval, frame = vc.read()

Save the frame as an image file

cv2.imwrite(IMAGE_FILE, frame)

Read the output file

img = cv2.imread(IMAGE_FILE)

HOME AUTOMATION WITH THE DRAGONBOARD 410C 12

Show the saved image on the screen

cv2.imshow("DragonBoard 410c Workshop", img)

Exit program after waiting indefinitely for a pressed key

cv2.waitKey(0)

You have now added three new lines of code and changed one existing line. The three added
lines will write the frame image into an external file (as defined by IMAGE_FILE, set to
“output.jpg”), and then open the file. The modified line now shows the opened image file to the
user.

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command:

Terminal

python save_picture.py

You should see a window popup with a still image taken from the webcam. Recall that pressing
any keyboard key will dismiss the new window with the picture. Your new program has now
saved the file as “output.jpg”. You can check the contents of your current directory and locate
this file. Run the “ls” utility to see the contents of your current directory:

Terminal

ls –lh

The contents of the directory will show as follows:

Example Output

frontalface.xml

output.jpg

save_picture.py

take_picture.py

You can open this picture with a Linux built-in picture viewer like so:

Terminal

gpicview output.jpg

Press the Ÿ key to close the gpicview window.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 13

Write text onto an image

We can extend the program we wrote in the last step to save an image that the webcam took
with the filename written on it to a file. Copy your previous file to a new one, and open the new
file up in your text editor.

Terminal

 cp save_picture.py write_text.py

 gedit write_text.py &

You have now opened a third Python source file, whose contents are exactly that of your
second program. Edit this file in gedit to include some new lines of code.

gedit write_text.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

IMAGE_FILE = “output_with_text.jpg”

FONT_FACES = [

 cv2.FONT_HERSHEY_SIMPLEX,

 cv2.FONT_HERSHEY_PLAIN,

 cv2.FONT_HERSHEY_DUPLEX,

 cv2.FONT_HERSHEY_COMPLEX,

 cv2.FONT_HERSHEY_TRIPLEX,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

 cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,

 cv2.FONT_HERSHEY_SCRIPT_COMPLEX

]

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

 # Exit the program

 sys.exit(1)

Read in the next frame

retval, frame = vc.read()

HOME AUTOMATION WITH THE DRAGONBOARD 410C 14

Write the filename onto the frame using every font

for i in xrange(len(FONT_FACES)):

 font_typeface = FONT_FACES[i]

 font_scale = 2

 font_color = (255,255,255)

 x = 0

 y = (i+1)*50

 cv2.putText(frame,IMAGE_FILE,(x,y),font_typeface,font_scale,font_color)

Save the frame as an image file

cv2.imwrite(IMAGE_FILE, frame)

Read the output file

img = cv2.imread(IMAGE_FILE)

Show the saved image on the screen

cv2.imshow("DragonBoard 410c Workshop", img)

Exit program after waiting indefinitely for a pressed key

cv2.waitKey(0)

You have just added a new constant and a for-loop. The new constant, “FONT_FACES”, is an
array which contains the names of all the fonts used by the OpenCV library. There are 8 fonts in
total, so the length of the array is 8.

In the newly added for-loop, you use the variable “i” to iterate through all of the “FONT_FACES”
fonts. The indented section defines the font properties, such as color, scale, and position (using
coordinates x and y).

You then use the OpenCV library to put the text onto the frame.

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command:

Terminal

python write_text.py

You should see a window popup with a still image taken from the webcam. This new still should
contain 8 different texts with differing fonts, all of which say the filename (IMAGE_FILE, which
is now “output_with_text.jpg”.

Recall that pressing any keyboard key will dismiss the new window with the picture.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 15

Your new program has now saved the file as “output_with_text.jpg”. You can check the
contents of your current directory and locate this file. Run the “ls” utility to see the contents of
your current directory:

Terminal

ls –lh

The contents of the directory will show as follows:

Example Output

frontalface.xml

output.jpg

output_with_text.jpg

save_picture.py

take_picture.py

write_text.py

HOME AUTOMATION WITH THE DRAGONBOARD 410C 16

Display a live video from the webcam

We can extend the program we wrote in the last step to show a live feed of video from the
webcam with text written on it. Copy your previous file to a new one, and open the new file up
in your text editor.

Terminal

cp write_text.py show_video.py

gedit show_video.py &

You have now opened a fourth Python source file, whose contents are exactly that of your third
program. Edit this file in gedit to include some new lines of code.

gedit show_video.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

IMAGE_FILE = “output_with_text.jpg”

FONT_FACES = [

 cv2.FONT_HERSHEY_SIMPLEX,

 cv2.FONT_HERSHEY_PLAIN,

 cv2.FONT_HERSHEY_DUPLEX,

 cv2.FONT_HERSHEY_COMPLEX,

 cv2.FONT_HERSHEY_TRIPLEX,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

 cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,

 cv2.FONT_HERSHEY_SCRIPT_COMPLEX

]

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

 # Exit the program

 sys.exit(1)

If the webcam read is successful, loop indefinitely

while retval:

HOME AUTOMATION WITH THE DRAGONBOARD 410C 17

 # Write text onto the frame using a single font

for i in xrange(len(FONT_FACES)):

 font_typeface = FONT_FACES[5]

 font_scale = 2

 font_color = (0,0,255)

 font_weight = 5

 x = 0

 y = 50

 cv2.putText(frame,”[LIVE]”,(x,y),

 font_typeface,font_scale,font_color,font_weight)

Save the frame as an image file

cv2.imwrite(IMAGE_FILE, frame)

Read the output file

img = cv2.imread(IMAGE_FILE)

 # Show the frame on the screen

 cv2.imshow("DragonBoard 410c Workshop", frame)

 # Read in the next frame

 retval, frame = vc.read()

 # Exit program if the ESCAPE key is pressed

 if cv2.waitKey(1) == 27:

 break

Make sure that all of the code underneath the “while” statement is properly indented!

There are significant changes to our program now, which we will explore in detail:

Our program now uses a “while” statement to loop indefinitely so long as the webcam
constantly gives the program a new frame. Looping through these frames is what gives
us live video!

We have removed the “for”-loop because we no longer want to loop through all of the
fonts. Instead, we have picked one font to use (in this case, the fifth font). Additionally,
we have added a new parameter “font_weight”, which gives thickness to the text. We
have changed the “font_color” from white to red. We have changed the text from the
file name to “[LIVE]”. Additionally, we have removed the two lines of code pertaining to
saving the frame, as we no longer want to save a still image.

Lastly, we have modified the “waitKey” call to now look and see if the returned key code

is equal to 27. This is the key code for the Ÿ key. If that key is pressed, we want to
“break” out of the “while”-loop and terminate the program.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 18

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command:

Terminal

python show_video.py

You should see a window popup showing a “LIVE” feed from your webcam. Smile! You’re on
camera now!

Try to see if you can exit your program using the Ÿ key, as we now check for a specific key

code in the program. If you are unable to exit the webcam feed using the Ÿ key, switch back

to your terminal window using the Å+Ê keys and terminating the process by using the

Ç+C keys.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 19

Convert the video into grayscale

We will once again show a live webcam feed, but this time, our goal is to convert the frame into
a grayscale image. This is a lossy operation; that means, we lose the color information in the
frame by converting it to grayscale. If you convert the video frame back into color/red-green-
blue (RGB) space, the result will still be a grayscale frame.

However, we would still like to convert BACK into the RGB-space because we would like the
onscreen “[LIVE]” text to still be red.

Copy your previous file to a new one, and open the new file up in your text editor.

Terminal

cp show_video.py convert_gray.py

gedit convert_gray.py &

You have now opened a fifth Python source file, whose contents are exactly that of your fourth
program. Edit this file in gedit to include some new lines of code.

gedit convert_gray.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

FONT_FACES = [

 cv2.FONT_HERSHEY_SIMPLEX,

 cv2.FONT_HERSHEY_PLAIN,

 cv2.FONT_HERSHEY_DUPLEX,

 cv2.FONT_HERSHEY_COMPLEX,

 cv2.FONT_HERSHEY_TRIPLEX,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

 cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,

 cv2.FONT_HERSHEY_SCRIPT_COMPLEX

]

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

HOME AUTOMATION WITH THE DRAGONBOARD 410C 20

 # Exit the program

 sys.exit(1)

If the webcam read is successful, loop indefinitely

while retval:

 # Convert frame to grayscale to wipe out color data

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Convert back to color (to use color text)

 frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)

 # Write text onto the frame using a single font

 font_typeface = FONT_FACES[5]

 font_scale = 2

 font_color = (0,0,255)

 font_weight = 5

 x = 0

 y = 50

 cv2.putText(frame,”[LIVE]”,(x,y),

 font_typeface,font_scale,font_color,font_weight)

 # Show the frame on the screen

 cv2.imshow("DragonBoard 410c Workshop", frame)

 # Read in the next frame

 retval, frame = vc.read()

 # Exit program if the ESCAPE key is pressed

 if cv2.waitKey(1) == 27:

 break

The OpenCV cvtColor function converts the frame object from one color-space to another in a
lossy fashion. We switch to-and-from the grayscale space to make the frame grayscale. This
operation is done in the two new lines of code shown above.

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command:

Terminal

python convert_gray.py

You should see a window popup showing a “LIVE” feed from your webcam. However, now the
image should be in grayscale. The text on the top-left should still be red.

HOME AUTOMATION WITH THE DRAGONBOARD 410C 21

Identify faces in the webcam video

We would now like to identify faces as seen on the live webcam feed. If a face is detected, we
want a rectangle to show outlining the boundaries of the face. We will extend upon the code in
our grayscale program. Copy your previous file to a new one, and open the new file up in your
text editor.

Terminal

cp convert_gray.py detect_face.py

gedit detect_face.py &

You have now opened a sixth Python source file, whose contents are exactly that of your fifth
program. Edit this file in gedit to include some new lines of code.

gedit detect_face.py

#!/usr/bin/env python

import cv2, sys

Define constants

DEVICE_NUMBER = 0

FONT_FACES = [

 cv2.FONT_HERSHEY_SIMPLEX,

 cv2.FONT_HERSHEY_PLAIN,

 cv2.FONT_HERSHEY_DUPLEX,

 cv2.FONT_HERSHEY_COMPLEX,

 cv2.FONT_HERSHEY_TRIPLEX,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

 cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,

 cv2.FONT_HERSHEY_SCRIPT_COMPLEX

]

Get XML file input

if len(sys.argv) > 1:

 XML_PATH = sys.argv[1]

else:

 print "Error: XML path not defined"

 sys.exit(1)

Initialize the cascade classifier

faceCascade = cv2.CascadeClassifier(XML_PATH)

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

HOME AUTOMATION WITH THE DRAGONBOARD 410C 22

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

else:

 # Exit the program

 sys.exit(1)

i = 0

faces = []

If the webcam read is successful, loop indefinitely

while retval:

 # Convert back to color (to use color text)

 frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)

 # Write text onto the frame using a single font

 font_typeface = FONT_FACES[5]

 font_scale = 2

 font_color = (0,0,255)

 font_weight = 5

 x = 0

 y = 50

 cv2.putText(frame,”[LIVE]”,(x,y),

 font_typeface,font_scale,font_color,font_weight)

 # Define the frame which the program will show

 frame_show = frame

 if i % 5 == 0:

 # Convert frame to grayscale to perform facial detection

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Detect objects and return an array of faces

 faces = faceCascade.detectMultiScale(

 frame,

 scaleFactor=1.2,

 minNeighbors=2,

 minSize=(50, 50),

 flags=cv2.cv.CV_HAAR_SCALE_IMAGE

)

 # Draw a rectangle around the faces

 for (x, y, w, h) in faces:

 cv2.rectangle(frame_show, (x, y), (x+w, y+h), (0, 0, 255), 2)

 # Show the frame on the screen

 cv2.imshow("DragonBoard 410c Workshop", frame_show)

HOME AUTOMATION WITH THE DRAGONBOARD 410C 23

 # Read in the next frame

 retval, frame = vc.read()

 # Exit program if the ESCAPE key is pressed

 if cv2.waitKey(1) == 27:

 break

 i += 1

Be sure to check your indentation! Once again, there are significant changes to our program,
which we will explore in detail:

Our program will now require an additional input in the command-line. This will be the
path to the cascade classifier XML file (we downloaded this in Phase 1). If our program
does not receive enough arguments, it will terminate. Once the XML file is loaded, we
initialize the cascade classifier OpenCV object.

We have added two new variables: “i" and “faces”. Variable “faces” will contain an array
of detected faces. Variable “i" is simply a counting number; every time we step through
the “while”-loop, we increment “i". If “i" is a multiple of 5, we perform the facial
recognition calculation. By only doing this computation every 5 frames, we speed up our
program and smooth out our results.

The detectMultiScale function for cascade classifier objects is what does the facial
recognition. We have provided some working values, but you are welcome to change
these to see how it affects the facial recognition performance!

The portion of the code which writes the text “[LIVE]” has been removed.

Also, note that we’ve introduced a new frame variable called “frame_show”. While we
convert variable “frame” into the grayscale color-space and perform the facial
recognition on that, we draw the rectangles inside of “frame_show”, and then put
“frame_show” on the screen. This explains why we are looking at a color video, and not
a grayscale one.

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command. Remember to provide the XML file downloaded earlier:

Terminal

python detect_face.py frontalface.xml

HOME AUTOMATION WITH THE DRAGONBOARD 410C 24

You should see a window popup showing a live webcam feed, as well as a red square around
any detected face in the video. Ta-da!

HOME AUTOMATION WITH THE DRAGONBOARD 410C 25

Phase 3: Emails and Text Alerts
In this phase you’ll learn how to send email and text messages in Python. This will allow your
home automation project to send alerts and notifications via the internet.

Install sendmail

To send emails and text messages from the DragonBoard 410c, you’ll first need to install an
email-sending utility, such as sendmail. Sendmail is an easy-to-use email-sending utility that
implements various email internet protocols, such as SMTP (Simple Mail Transfer
Protocol). The sendmail executable can be used to send emails from the command-line, but in
our case we’ll be using a Python module that uses SMTP to send email/text via Python
programs.

In your terminal window, run the command below to install sendmail from the software
repository:

Terminal

sudo apt-get install -y sendmail

On the current version of linux for the DragonBoard 410c, an additional step is required:

Terminal

sudo gedit /etc/hosts &

Update the first line of the file, as shown below:

gedit hosts

127.0.0.1 localhost

127.0.0.1 localhost.localdomain localhost linaro-alip

Run the command below to send yourself an email. Replace <Email Address> with your email
address.

Terminal

/usr/lib/sendmail “<Email Address>” <<< “Test email!”

You should now have an email with the message ‘Test email!’ in your email inbox. It’s very
likely that this email will end up in your spam folder since it is coming from an unknown domain
(linaro@linaroaip-alip). Note that some company and university networks block the ports used
by SMTP (25, 2525, 587, and 465), which will prevent emails from going out on those networks
(we recommend trying this part on a home network).

HOME AUTOMATION WITH THE DRAGONBOARD 410C 26

Send an email

There are several ways to send an email in Python, but for this lab we’ll use the ‘email’
package. It provides several capabilities that are well-suited to home-automation applications,
and is easy-to-use.

In your terminal window, create a new file named ‘send_email.py’:

Terminal

gedit send_email.py &

Add the following lines of code and save your changes. Follow the comments and read below to
see what each part of the code does. Replace <Insert Email Address> with your email address
(preferably one you can access right now).

gedit send_email.py

#!/usr/bin/env python

Import smtplib for the actual sending function

import smtplib

Import the email modules we'll need

from email.mime.text import MIMEText

Create a text/plain message

msg = MIMEText(“Face detected!”)

msg['Subject'] = “Your DragonBoard 410c has detected someone”

msg['From'] = “linaro@localhost”

msg['To'] = “<Insert Email Address>”

Send the message via our own SMTP server (sendmail)

s = smtplib.SMTP('localhost')

s.set_debuglevel(1)

s.sendmail(msg['From'], [msg['To']], msg.as_string())

s.quit()

print "Email sent!"

Here’s what each line of code above does:

 ‘import smtplib’ adds the library containing the ‘smptlib.SMTP’ function
 ‘from email.mime.text import MIMEText’ adds the library containing the ‘MIMEText’

function

HOME AUTOMATION WITH THE DRAGONBOARD 410C 27

 ‘msg = MIMEText(...)’ creates a new MIMEText object, which is an object representing a
simple text email (with the message contained in quotes)

 The next 3 lines add a Subject, From, and To to the email object
 ‘s = smptlib.SMTP(‘localhost’)’ creates a new SMPT object, which is an object able to

send email via the SMPT protocol (using sendmail behind the scenes)
 ‘s.sendmail(...)’ sends the email content using the ‘From’ and ‘To’ strings entered above
 ‘s.quit’ waits for the email to be sent then cleans up the SMTP object

Save your changes and exit the text editor. Return to the terminal and run your new program
by entering the command:

Terminal

python send_email.py

Your program will print “Email sent” and should complete in a few seconds. If you see an error
printed to the screen, check your program for errors. Remember that in Python you cannot mix
tabs and spaces, so make sure all indentation are either all tabs or all spaces. Consult your
workshop administrators for additional questions.

Now check your email inbox (or spam folder if you don’t see a new message in your inbox). You
should see an email from ‘linaro@linaroaip-alip’ that says “Face detected”. Note that you could
have put any email address on the ‘From’ line and it would appear as though it was sent from
that person. The IP address of the sender is sent along with the email, though, which can be
used to help identify the actual sender. Also, any replies to the email would go to the person
indicated in the ‘From’ line (although localhost is a generic domain that is not listed in DNS
servers, so replies to this test email won’t be possible without some additional setup on the
DragonBoard 410c).

HOME AUTOMATION WITH THE DRAGONBOARD 410C 28

Send a text + image email in Python

Now that you have sent a text email, you can extend this program by embedding an image to
the email. For this part of the workshop, you’ll need an image file that you’ve captured with the
webcam. We will be using the “output.jpg” file created in Phase 2 of this workshop.

Copy your previous Python program to a new one, and open the new file up in your text editor.

Terminal

cp send_email.py send_email_pic.py

gedit send_email_pic.py &

Edit this file in gedit to include some new lines of code.

gedit send_email_pic.py

#!/usr/bin/env python

Import smtplib for the actual sending function

import smtplib

Import the email modules we'll need

from email.mime.text import MIMEText

from email.mime.image import MIMEImage

from email.mime.multipart import MIMEMultipart

Create a multipart message

msg = MIMEMultipart()

msg.attach(MIMEText(“Face detected!”))

msg['Subject'] = “Your DragonBoard 410c has detected someone”

msg['From'] = “linaro@localhost”

msg['To'] = “<Insert Email Address>”

Try opening and attaching the image file

try:

 f = open(“output.jpg”, ”rb”)

 img = MIMEIMAGE(f.read())

 f.close()

 msg.attach(img)

except IOError:

 print “Error: Cannot find ‘output.jpg’!”

Send the message via our own SMTP server (sendmail)

s = smtplib.SMTP('localhost')

s.set_debuglevel(1)

HOME AUTOMATION WITH THE DRAGONBOARD 410C 29

s.sendmail(msg['From'], [msg['To']], msg.as_string())

s.quit()

print "Email sent!"

This program adds a few more lines of code:

 The new import lines add the ‘MIMEImage’ and ‘MIMEMultipart’ packages, used for
sending image and multi-part emails (text and images)

 This time the email is created as a ‘MIMEMultipart’ object, with a ‘MIMEText’ object
containing the text message attached as the first part of the message

 We attempt to open an image file “output.jpg” (which was generated in Phase 2). Then,
the image is loaded into a MIMEImage object. We then safely close the image file, then
attach the image to the email message object.

 If there is an error opening the file, we print out an error statement “Cannot find
‘output.jpg’!”. This is how a try-and-except statement works in Python.

Return to the command line and run this new program:

Terminal

python send_email_pic.py

Same as before, the program should output “Email sent” when it is finished, so check the syntax
and spacing if you see any errors. Notes that in the example above, the path to the image is
‘output.jpg’, which means it expects the images to be in the same directory that the program
was run in. Check your email inbox and see if the message has arrived with the image attached!

HOME AUTOMATION WITH THE DRAGONBOARD 410C 30

Send a text + image + date email in Python

Next we’ll add a date/time string to the email, so you’ll know exactly when the email was sent.

Copy your previous Python program to a new one, and open the new file up in your text editor.

Terminal

cp send_email_pic.py send_email_pic_date.py

gedit send_email_pic_date.py &

Edit this file in gedit to include some new lines of code.

gedit send_email_pic_date.py

#!/usr/bin/env python

Import smtplib for the actual sending function

import smtplib

Import time module to create a timestamp

import time

Import the email modules we'll need

from email.mime.text import MIMEText

from email.mime.image import MIMEImage

from email.mime.multipart import MIMEMultipart

Create a multipart message

msg = MIMEMultipart()

msg.attach(MIMEText(“Face detected!”))

msg['Subject'] = “Your DragonBoard 410c has detected someone (%s)” \

 % time.strftime(“%m/%d/%Y %H:%M”)

msg['From'] = “linaro@localhost”

msg['To'] = “<Insert Email Address>”

Try opening and attaching the image file

try:

 f = open(“output.jpg”,”rb”)

 img = MIMEIMAGE(f.read())

 f.close()

 msg.attach(img)

except IOError:

 print “Error: Cannot find ‘output.jpg’!”

Send the message via our own SMTP server (sendmail)

HOME AUTOMATION WITH THE DRAGONBOARD 410C 31

s = smtplib.SMTP('localhost')

s.set_debuglevel(1)

s.sendmail(msg['From'], [msg['To']], msg.as_string())

s.quit()

print "Email sent!"

In this program we made the following changes:

 We have added ‘import time’ to include the common time functions.
 Now, the email’s subject will include ‘(%s)’ in the string, which Python will swap out with

the text returned by ‘time.strftime(...)’. This function is used to return the current date
in a user-configurable format (for example, in our program: 12/13/2016 23:59).

 Note that the code uses a backslash ‘\’ to escape the newline character, allowing the ‘%
time.strftime(...)’ to be placed on the next line. For this to work, the backslash must be
the last character on the line (or you can remove the backslash and put both lines on the
same line).

Run the new program just as you did the old programs before:

Terminal

python send_email_pic_date.py

You should now see an email that contains the date that the email was sent in the
subject. Note that this uses the time on the DragonBoard 410c, so make sure that is configured
correctly to ensure the time sent in emails is correct (refer to the APPENDIX for details on
changing the DragonBoard 410c’s time zone).

HOME AUTOMATION WITH THE DRAGONBOARD 410C 32

Send text messages in Python

Now that you know how to send emails from the DragonBoard 410c, sending text messages is a
piece of cake (thanks to the phone service providers). All of the major cell carriers have email
addresses that map to the phone numbers on their network (called the SMS Gateway
Domain). The email address for a phone number is simply the 10-digit phone number @ the
domain specified by the carrier. The table below shows the SMS Gateway Domains for the
major carriers.

Carrier Email Domain

AT&T txt.att.net

Sprint messaging.sprintpcs.com

Verizon vtext.com

T-Mobile tmomail.net

Cricket Wireless mms.cricketwireless.net

Republic Wireless text.republicwireless.com

U.S. Cellular email.uscc.net

Virgin Mobile vmobl.com

Determine the email address that maps to your phone number using the table above (ex.
8005551234@txt.att.net). Test that you have the correct email address by sending an email
from your email address to your SMS email address. Now we’ll try it on the DragonBoard 410c!

Because we will only be sending a simple text message, we can go back to the code use for just
plaintext emails. Copy your previous Python program to a new one, and open the new file up in
your text editor. Be sure to replace ‘<Insert Email Address>’ and ‘<Insert Gateway Address>’
with your email address, and the gateway address determined above, respectively.

Terminal

cp send_email.py send_text_msg.py

gedit send_text_msg.py &

Edit this file in gedit to include some new lines of code.

gedit send_text_msg.py

#!/usr/bin/env python

Import smtplib for the actual sending function

import smtplib

HOME AUTOMATION WITH THE DRAGONBOARD 410C 33

Import the email modules we'll need

from email.mime.text import MIMEText

Create a simple email to be converted into a text message

msg = MIMEText(“Face detected!”)

msg['Subject'] = “”

msg['From'] = “<Insert Email Address>”

msg['To'] = “<Insert Gateway Address>”

Send the message via our own SMTP server (sendmail)

s = smtplib.SMTP('localhost')

s.set_debuglevel(1)

s.sendmail(msg['From'], [msg['To']], msg.as_string())

s.quit()

print "Text message sent!"

The program above is almost identical to the ‘send_email.py’ program, only the subject is left
blank (as text messages do not have a subject line). Additionally, the ‘To’ and ‘From’ addresses
are different. Run the new program just as you did the old programs before:

Terminal

python send_text_msg.py

If you see errors printed to the screen, check your syntax and spacing. At this point, one of two
things might occur:

1) Either the text message will be sent and will make its way to your phone, showing your
email address as the sender,

2) Or the text message will be rejected by your carrier’s spam filter and won’t be
delivered.

Unlike your email inbox, there is no spam folder for your text messages, so if the message is
flagged by your carrier’s spam filter, it won’t be delivered. If this happens, the carrier will
typically reply to the sender (your email address) with a message indicating that the email was
flagged as spam. There are ways to get around this, including using a service like Twilio
(www.twilio.com), or additional configurations to your DragonBoard 410c. Twilio is a paid
service but is free initially when developing, and isn’t too expensive.

http://www.twilio.com/

HOME AUTOMATION WITH THE DRAGONBOARD 410C 34

Phase 4: Putting It All Together
In this last phase of the workshop, we will stitch together our facial recognition program with
our image-attached email delivery program. Together, this will form the basic operation of a
smart surveillance camera which may see growing use in the modern home.

You can copy your earlier programs, or manually type out the resulting program. Let’s name our
final script “smart_cam.py”. Open it now in gedit:

Terminal

gedit smart_cam.py &

The combined code from your previous files may look like the following:

gedit smart_cam.py

#!/usr/bin/env python

import cv2, sys, smtplib

Import the email modules we'll need

from email.mime.text import MIMEText

from email.mime.image import MIMEImage

from email.mime.multipart import MIMEMultipart

Define constants

DEVICE_NUMBER = 0

IMAGE_FILE = "detected_face.jpg",

Get XML file input

if len(sys.argv) > 1:

 XML_PATH = sys.argv[1]

else:

 print "Error: XML path not defined"

 sys.exit(1)

Initialize the cascade classifier

faceCascade = cv2.CascadeClassifier(XML_PATH)

Initialize webcam

vc = cv2.VideoCapture(DEVICE_NUMBER)

Check if the webcam works

if vc.isOpened():

 # Try to get the first frame

 retval, frame = vc.read()

HOME AUTOMATION WITH THE DRAGONBOARD 410C 35

else:

 # Exit the program

 sys.exit(1)

i = 0

faces = []

If the webcam read is successful, loop indefinitely

while retval:

 # Define the frame which the program will show

 frame_show = frame

 if i % 5 == 0:

 # Convert frame to grayscale to perform facial detection

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Detect objects and return an array of faces

 faces = faceCascade.detectMultiScale(

 frame,

 scaleFactor=1.2,

 minNeighbors=2,

 minSize=(50, 50),

 flags=cv2.cv.CV_HAAR_SCALE_IMAGE

)

 # If at least one face has been detected

 if len(faces) > 0:

 # Draw a rectangle around the faces

 for (x, y, w, h) in faces:

 cv2.rectangle(frame_show, (x, y), (x+w, y+h), (0, 0, 255), 2)

 # Save the frame as an image file

 cv2.imwrite(IMAGE_FILE, frame_show)

 # Exit the webcam while-loop

 break

 # Show the frame on the screen

 cv2.imshow("DragonBoard 410c Workshop", frame_show)

 # Read in the next frame

 retval, frame = vc.read()

 # Exit the webcam while-loop if the ESCAPE key is pressed

 if cv2.waitKey(1) == 27:

HOME AUTOMATION WITH THE DRAGONBOARD 410C 36

 break

 i += 1

Once you have exited the webcam while-loop,

create an email and try to attach the detected face image

msg = MIMEMultipart()

msg.attach(MIMEText(“Face detected!”))

msg['Subject'] = “Your DragonBoard 410c has detected someone”

msg['From'] = “linaro@localhost”

msg['To'] = “<Insert Email Address>”

try:

 f = open(IMAGE_FILE, ”rb”)

 img = MIMEIMAGE(f.read())

 f.close()

 msg.attach(img)

except IOError:

 print “Error: Cannot find”, IMAGE_FILE

Send the message via our own SMTP server (sendmail)

s = smtplib.SMTP('localhost')

s.set_debuglevel(1)

s.sendmail(msg['From'], [msg['To']], msg.as_string())

s.quit()

print "Email sent!"

Save your changes and exit the text editor. Now try running the program:

Terminal

python smart_cam.py frontalface.xml

Then check if you received an email from your DragonBoard 410c with the facial recognition
output image attached. If you have reached this point, congratulations! You have completed
the “Home Automation with the DragonBoard 410c” workshop. By this point, you should have
increased familiarity and comfort with using the Python scripting language as well as gained a
basic understanding of the OpenCV library. The above program can be improved and extended
in many ways to serve your needs. Some possible extensions you can explore on your own
include:

 Optimizing the cascade classifier parameters to detect faces faraway and nearby
 Sending a text message alert if a face is recognized
 Training a classifier to treat certain faces as known and other faces as unknown
 Writing time-stamp information directly onto the image before emailing

HOME AUTOMATION WITH THE DRAGONBOARD 410C 37

APPENDIX

Flashing Linux onto the DragonBoard 410c

1. Unplug every adapter and cord from the DragonBoard 410c, then insert the microSD
card that contains the version of Linux that you desire (currently Ubuntu and Debian
available).

2. Set the S6 switch on the DragonBoard 410c to 0-1-1-0 (SD Boot and USB Host switches
set to “ON”)
*** See Setting S6 Switches *** below in the Appendix for more info.

3. Plug a USB mouse into either of the two USB connectors on the DragonBoard 410c.
4. Connect an HDMI monitor to the DragonBoard 410c with an HDMI cable and turn the

monitor on.
5. Connect the power cable to the DragonBoard 410c.
6. When a menu appears on the screen, click on the install icon located on the top left of

the window. Click YES to the prompt to confirm that you want to flash Ubuntu.
7. When successful, a window should say “OS Installed”.
8. Remove the SD card.
9. When you are ready, press OK to reboot.
10. Disconnect the power cable from the DragonBoard 410c.
11. Set the S6 switches so that ONLY “USB Host” is enabled (0-0-1-0).

http://builds.96boards.org/releases/dragonboard410c/linaro/ubuntu/latest/dragonboard410c_sdcard_install_ubuntu-*.zip
http://builds.96boards.org/releases/dragonboard410c/linaro/debian/latest/dragonboard410c_sdcard_install_debian-*.zip

HOME AUTOMATION WITH THE DRAGONBOARD 410C 38

12. Reconnect the power cable to the DragonBoard 410c which will reboot into Ubuntu.

Setting S6 Switches

1. Ensure that the DragonBoard 410c is OFF and not plugged into power.
2. If you flip the DragonBoard 410c upside down, you will notice a small block of 4 switches

near the HDMI port. Right next to this block you should see the letters “S6” printed on
the board. Additionally, you should see a description of each switch printed on the
board on the opposite side of the block.

3. Using a pen or other sharp object, carefully push the switches you desire to their correct
positions. Note that the block has the word ON on the side that is considered ON.
Flipping the switches to the other side would indicate that the switch is OFF.

Troubleshooting Wi-Fi Connection Issues

1. Make sure the DragonBoard 410c’s mac address matches the sticker printed on the
bottom of the board
Open a terminal window and run: echo /lib/firmware/wlan/macaddr0

2. If it doesn’t match, follow the steps here:
https://developer.qualcomm.com/qfile/29540/lm80-p0436-44_set_up_wi-
fi_mac_addr_dragonboard410c.pdf

3. If the network credentials work but the router never allocates the board an IP address,
try disabling DHCP (example settings shown below), disable the adapter, then re-
enable. Select a unique IP address, determine the gateway from a board/computer that
is able to connect, and use Google’s DNS servers temporarily (8.8.8.8, 8.8.4.4).

https://developer.qualcomm.com/qfile/29540/lm80-p0436-44_set_up_wi-fi_mac_addr_dragonboard410c.pdf
https://developer.qualcomm.com/qfile/29540/lm80-p0436-44_set_up_wi-fi_mac_addr_dragonboard410c.pdf

HOME AUTOMATION WITH THE DRAGONBOARD 410C 39

4. If the network connection is successful but shell commands can’t access the internet,
open a web browser and try visiting a web page. There may be a login or agreement on
the network that must be completed before access will be allowed.

Setting the DragonBoard 410c’s time zone

One simple step. Follow the prompts after you run this command:

Terminal

sudo dpkg-reconfigure tzdata

© 2016 Qualcomm Technologies, Inc. All rights reserved. Qualcomm, Snapdragon, and DragonBoard are trademarks of
Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be
trademarks or registered trademarks of their respective owners.

