WGR7640 IC GNSS RF Receiver Design Guidelines

September 2016
Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>September 2016</td>
<td>Update to ‘E’ part</td>
</tr>
<tr>
<td>A</td>
<td>August 11, 2015</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Contents

1 Overview ... 5
 1.1 Purpose ... 5
 1.2 Acronyms, abbreviations, and terms .. 5
 1.3 WGR7640 within the APQ chipset .. 6
 1.4 Overview of WGR7640 topics .. 6
 1.5 WGR7640 features .. 7

2 WGR7640 System .. 8
 2.1 GNSS receiver system block diagram .. 8

3 WGR IC Details – RF .. 9
 3.1 WGR RF receivers high-level comments ... 9
 3.2 WGR7640 RF receiver pin assignments .. 9

4 WGR IC Details – Baseband Interfaces .. 11
 4.1 WGR Rx baseband interfaces with Application Processor Qualcomm (APQ) IC............ 11
 4.2 WGR RF GNSS input ports – schematic ... 11
 4.3 WGR RF GNSS input ports – layout guidelines ... 12
 4.4 GNSS receiver matching procedure ... 13

5 WGR IC Details – Support Circuits ... 14
 5.1 WGR support circuits high-level comments .. 14
 5.2 GNSS LO synthesizer .. 14
 5.3 WGR digital status and control .. 15

6 Top-level Design Topics .. 17
 6.1 Top-level parts placement WGR ... 17
 6.2 Shielding recommendations .. 18
 6.3 WGR DC power topology .. 18
 6.4 WGR IC DC routing and bypassing – general ... 19
 6.5 WGR ground connections .. 19

EXHIBIT 1 .. 21

Figures

Figure 1-1 WGR7640 within the APQ chipset .. 6
Figure 1-2 WGR7640 top-level layout guidelines ... 6
Figure 2-1 GNSS receiver system block diagram ... 8
Figure 3-1 WGR RF receivers ... 9
Figure 3-2 WGR7640 RF receiver pin assignments ... 10
Figure 4-1 WGR Rx baseband interfaces with APQ IC ... 11
Tables

Table 1-1 Acronyms, abbreviations, and terms ...5
Table 3-1 Supported frequency bands ...9
1 Overview

1.1 Purpose

This document provides a description of the WGR7640 IC chipset capabilities. Not all features are available, nor are all features supported in the software.

NOTE: Enabling some features may require additional licensing fees.

1.2 Acronyms, abbreviations, and terms

Table 1-1 provides definitions for the acronyms, abbreviations, and terms used in this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APQ</td>
<td>Application Processor Qualcomm</td>
</tr>
<tr>
<td>CSP</td>
<td>Control Switching Point</td>
</tr>
<tr>
<td>GLONASS</td>
<td>Global NAVigation Satellite System</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>LO</td>
<td>Local Oscillator</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-locked Loop</td>
</tr>
<tr>
<td>PMIC</td>
<td>Power Management Integrated Circuit</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SSBI</td>
<td>Signal-Signal Beating Interference</td>
</tr>
<tr>
<td>WGR</td>
<td>WLP GPS Receiver</td>
</tr>
<tr>
<td>WLP</td>
<td>Wafer-level Package</td>
</tr>
</tbody>
</table>
1.3 WGR7640 within the APQ chipset

Figure 1-1 WGR7640 within the APQ chipset

1.4 Overview of WGR7640 topics

This document provides an introduction to the WGR system, followed by three major sections: RF receivers, baseband interface, and support circuits (as shown in Figure 1-2).

Figure 1-2 WGR7640 top-level layout guidelines
1.5 WGR7640 features

Salient features:

- Small package: 2.07 mm × 1.51 mm × 0.63 mm
- 65 nm wafer-level package (WLP)
- 17-pin CSP
- GNSS stand alone RF receiver
- Compatible with Callisto (Gen8A) GPS digital baseband engine
- Fully integrated synthesizer PLL, VCO, and loop filter components
- Power reduction features for low-power consumption
- Single-line serial bus interface (SSBI)
- The chipset solution includes the APQ + WGR7640 ICs
2 WGR7640 System

2.1 GNSS receiver system block diagram

Dedicated synthesizer used for GNSS operation; provides the LO for the GNSS receiver

WGR7640 IC can be placed close to the GNSS antenna and does not need a GNSS ELNA

I and Q components from the WGR7640 IC are routed to on-chip ADC circuits in the APQ IC, that digitize the received signals and route the serial data streams to the Gen8A Engine.

Figure 2-1 GNSS receiver system block diagram
3 WGR IC Details – RF

3.1 WGR RF receivers high-level comments

- Receiver is implemented in 65 nm RFCMOS process which accommodates high-frequency, high-precision analog circuits and low-power CMOS functions
- Independent receive path from RF to baseband (I/Q)
- Optimized for standalone operation
- Consists of differential RF inputs supporting primary GPS, GLONASS, Compass, Galileo, and QZSS navigation satellite systems. Supported frequency bands are shown in Table 3-1.

Table 3-1 Supported frequency bands

<table>
<thead>
<tr>
<th>Satellite system</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS L1/QZSS</td>
<td>1575.42 ± 1 MHz</td>
</tr>
<tr>
<td>GPS L1C, Galileo E1, Compass B1-BOC</td>
<td>1575.42 ± 2 MHz</td>
</tr>
<tr>
<td>GPS L1 wide</td>
<td>1575.42 ± 10 MHz</td>
</tr>
<tr>
<td>GLONASS R1</td>
<td>1602 ± 4 MHz</td>
</tr>
<tr>
<td>Compass B1</td>
<td>1561 ± 2 MHz</td>
</tr>
</tbody>
</table>

3.2 WGR7640 RF receiver pin assignments

GNSS RF ports are grouped together (purple squares)
- Sensitive RF signals
- RF front-end (filters, etc.) located in this direction as seen in the top view
GNSS baseband (green squares)
- Sensitive analog signals
- Opposite side away from RF pins

Figure 3-1 WGR RF receivers
- APQ source located in this direction as seen in the top view

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GND</td>
<td>RF_P</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>RF_M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BB_I_M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>SSBI</td>
</tr>
<tr>
<td>9</td>
<td>BB_I_P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BB_Q_M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VDD_RF_1P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>BB_Q_P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>XO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>VDD_RF_1P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>VDD_DIG_1P8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-2 WGR7640 RF receiver pin assignments
4 WGR IC Details – Baseband Interfaces

4.1 WGR Rx baseband interfaces with Application Processor Qualcomm (APQ) IC

The baseband interface has two differential pairs: in-phase (I) and quadrature (Q):

- The I and Q baseband outputs are sensitive analog signals.
- Route the I and Q signals as phase-critical differential pairs.
- The resistance and capacitance on each pair should be equal.
- Avoid crossing these traces; if necessary, cross them only near the APQ end points.
 - Isolate the device from digital logic and clock traces with ground all around; treat similarly to controlled-impedance traces.
 - The length of the I/Q traces between the APQ and WGR should be equal and should not exceed 8 inches.

4.2 WGR RF GNSS input ports – schematic

Optional:

- An external LNA (not required)
- Space and pads for an external LNA preceded by a second bandpass filter (to allow addition of these components if necessary)
4.3 WGR RF GNSS input ports – layout guidelines

- Traces from the filters (pink arrows) must use controlled-impedance techniques – microstrip or stripline – designed to provide 100 Ω differential (nominal). Stripline provides higher isolation since it is surrounded by ground planes.
- The components are close to the WGR pins; routing is short and direct.
- If needed, the areas directly below all component pads and signal traces are cleared of metal on layer 2 to minimize parasitic capacitance (not shown).
- Inductors should be placed in ways that limit mutual coupling.
- The complementary paths within each differential pair should be as symmetrical as possible to preserve their phase balance and maintain common-mode rejection.
- Where possible, isolate matching components and traces from all other circuits and traces using coplanar ground fill (not shown).
- Trace capacitances between WGR input pins and matching components should be kept very low.
- Some extra components are included in initial layouts to increase matching flexibility but might prove unnecessary after careful testing and evaluation.
- Specific RF grounding guidelines should be followed:
 - The ground side of the RF components must connect as directly as possible to the nearest ground reference and should connect to multiple ground fills on multiple layers to provide the best grounding.
 - Do not allow long, thin traces to connect RF components to ground – the added trace inductance could disrupt circuit performance.
 - Microvias from the ground pads directly to the PCB ground plane are recommended.
 - A total ground inductance of less than 100 pH is desired.
4.4 GNSS receiver matching procedure

- Measure the differential 100 Ω input return loss (Sdd11) looking into the WGR device’s matching network.

- Iteratively adjust the matching network with minor component changes to achieve the desired performance, making trade-offs between the following objectives as needed:
 - Center the passband and provide sufficient bandwidth.
 - Minimize the nominal noise figure using sensitivity measurements.
 - Standard values of inductors and capacitors can be selected.
 - The type and size of inductors can affect noise figure.

![Diagram of GNSS receiver matching](image)

Figure 4-4 GNSS receiver matching
5 WGR IC Details – Support Circuits

5.1 WGR support circuits high-level comments

- WGR pins and circuits that provide secondary support functions to the RF transceiver include:
 - GNSS LO synthesizer and related
 - 19.2 MHz XO input
 - Digital status and control signals
 - Single-wire serial bus interface (SSBI)

- Grounds
 - Pins 1 and 3 – grounded via a 0 Ω resistor

![WGR7640 Support Circuits Diagram]

Figure 5-1 WGR support circuits

5.2 GNSS LO synthesizer

- The integrated local oscillator (LO) generation and distribution circuits are driven by internal VCOs to support various modes to yield highly flexible quadrature LO outputs to the GNSS down converter.

- The WGR7640 IC has a dedicated synthesizer used for GNSS operation. This synthesizer provides the LO for the GNSS receiver.
- For the WGR7640 IC, an external 19.2 MHz input signal obtained from the PMIC device is required to provide the synthesizer frequency reference to which the PLL is phase- and frequency-locked.

- The WGR7640 IC integrates all of the PLL loop filter components on-chip. With the integrated PLL synthesizers, the WGR7640 IC has the advantage of more flexible loop bandwidth control, fast lock time, and low integrated phase error.

![Diagram of WGR7640 IC GNSS LO synthesizer](image)

Figure 5-2 GNSS LO synthesizer

5.3 WGR digital status and control

- **Power (VDD_DIG_1P3)** – Use the same supply that is used for APQ digital I/Os to ensure logic compatibility and prevent latchups.

- **SSBI** allows efficient initialization, GNSS mode and parameter controls, and programming verification:
 - The APQ device’s SSBI controller is the master while the WGR circuit is the slave.
 - SSBI is clocked at 19.2 MHz (reference clock frequency), so good layout techniques are extremely important.

- The SSBI signal is decoded and used to set on-chip control signals to the GNSS functional blocks. GNSS status is also reported to the APQ device through these circuits and SSBI.
Primary IC operating modes, such as sleep, warmup, air interface technology, etc.

Circuit parameters such as gain, bias conditions, on/off, clock rates, LO frequencies, etc.

RF transceiver status & control

Supports GNSS functions

Other I/Os

Primary status & control signaling

Figure 5-3 WGR digital status and control
6 Top-level Design Topics

6.1 Top-level parts placement WGR

1. Place the WGR section as close as possible to the GNSS antenna.
2. Digital devices and traces must not be placed near the top edge because they generate noise that could couple onto antennas, degrading performance (self-jamming/spurs).
3. Isolate the power management circuitry – especially SMPS circuits – from the WGR circuits.
4. The 19.2 MHz clock trace between the WGR7640 and PM8921 should be well isolated.
5. Allow space for shields. Specific shielding guidelines are given next.

Figure 6-1 Top-level parts placement WGR
6.2 Shielding recommendations

- Shield the WGR7460 IC, its matching components, RF front end components, digital (including the APQ device), and PMIC circuits.
- Metal cans are better than metallized plastic.
- Recommended shield partitioning:
 - Preserve Tx-to-Rx isolation
 - WGR IC and its Rx matching components in one shield and RF front end components in another shield
 - Do not locate WGR matching inductors too close to shield walls (this might cause EM coupling and inductor de-Q)

6.3 WGR DC power topology

- The number of bypass capacitors required in a final design depends upon the PCB layout:
 - Initial designs should begin with “extra” series components (such as resistors, inductors, or beads) and bypass capacitors.
 - After extensive test and evaluation, their numbers might be reduced prior to production.
 - Ground bypass capacitors with vias that are connected directly to the internal PCB RF ground plane.
 - Avoid thin, high-inductance traces.

Figure 6-2 WGR DC power topology
6.4 WGR IC DC routing and bypassing – general

- WGR IC and bypass capacitor on the same side
 - Star configuration with dedicated traces from capacitor to each WGR IC pin
 - Daisy-chain configuration with shared traces from capacitor to multiple WGR IC pins

- WGR IC and bypass capacitor on opposite sides
 - Opposite side bypassing is better due to lower loop inductance

6.5 WGR ground connections

Proper grounding is crucial:
- Dedicate at least one layer for ground – layer 5 is shown for example
- Ground plane – common point referenced by all handset circuits
- Fill unused space on all layers to provide robust layer-to-layer ground
- Connect bypass caps directly to surface ground fill, with multiple vias to layer 5 ground

Keep WGR ground pins separate from all other circuit grounds until they converge on layer 5:
- Via each set as directly as possible to the layer 5 ground plane.
- Include as much ground fill as possible to each layer between 1 and 5 below the WGR device, connecting each stack of vias to the WGR ground fill areas.
- Use a large copper mass to provide the best possible electrical ground and thermal conductivity – both needed for WGR performance.
Below the WGR device – isolate WGR grounds from all others on all layers except the PCB ground plane layer. The two grounds are tied together ONLY on the PCB ground layer.

Figure 6-3 WGR ground connections
EXHIBIT 1

PLEASE READ THIS LICENSE AGREEMENT (“AGREEMENT”) CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND QUALCOMM TECHNOLOGIES, INC. (“QTI” “WE” “OUR” OR “US”). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, “MATERIALS”), BY USING OR COMPILING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

1.1 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions, limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. (“QTI”) hereby grants to you a nonexclusive, limited license under QTI’s copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials. You may not use Qualcomm Technologies or its affiliates or subsidiaries name, logo or trademarks; and copyright, trademark, patent and any other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination of this Agreement, Sections 1.2-4 shall survive.

1.2 Indemnification. You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI (including but not limited to costs of defense, investigation and reasonable attorney’s fees) arising out of, resulting from or related to: (i) any breach of this Agreement or your acts, omissions or failure to act in connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.

1.3 Ownership. QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and nothing herein shall be deemed to grant any right to You under any of QTI’s or its affiliates’ patents. You shall not subject the Materials to any third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to support any potential patent infringement claim against QTI, its affiliates, or any of QTI’s or its affiliates’ suppliers and/or direct or indirect customers. QTI hereby reserves all rights not expressly granted herein.

1.4 WARRANTY DISCLAIMER. You EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT, IF ANY, ARE PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) A WARRANTY OR REPRESENTATION BY QTI, ITS LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OR (II) A WARRANTY OR REPRESENTATION BY QTI THAT ANY MANUFACTURE OR USE WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES.

1.5 LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI, QTI’S AFFILIATES OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE DELIVERABLE OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS AGREEMENT, EVEN IF QTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTI, QTI’S AFFILIATES AND ITS LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US$10.

2. COMPLIANCE WITH LAWS; APPLICABLE LAW. You agree to comply with all applicable local, international and national laws and regulations and with U.S. Export Administration Regulations, as they apply to the subject matter of this Agreement. This Agreement is governed by the laws of the State of California, excluding California’s choice of law rules.

3. CONTRACTING PARTIES. If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI that they have the authority to bind such entity to the terms and conditions of this Agreement.

4. MISCELLANEOUS PROVISIONS. This Agreement, together with all exhibits attached hereto, which are incorporated herein by this reference, constitutes the entire agreement between QTI and You, supersedes all prior negotiations, representations and agreements between the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations, conditions and exclusions, QTI would not have entered into this Agreement with You. Each party shall be responsible for and shall bear its own expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested this Agreement and all related documents be prepared in English.