WCN3620 Layout Guidelines

September 2016

© 2015-2016 Qualcomm Technologies, Inc. All rights reserved.

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its other subsidiaries.

DragonBoard, Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly prohibited.

Use of this document is subject to the license set forth in Exhibit 1.

Questions or comments: https://developer.qualcomm.com/forums/qdn-forums/hardware
Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>September 2016</td>
<td>Update to 'E' part</td>
</tr>
<tr>
<td>A</td>
<td>August 26, 2015</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 5
 1.1 Purpose ... 5
 1.2 Acronyms, abbreviations, and terms .. 5

2 Pin Assignment .. 7

3 Board Information (2:n:2) .. 8
 3.1 Stack up (2:n:2) ... 8

4 Layout Checklist ... 11
 4.1 Layout checklist .. 11
 4.2 Board-level layout guidelines .. 12
 4.2.1 Component placement .. 12
 4.2.2 Keep-out areas .. 14
 4.2.3 Vias on WCN3620 ... 15
 4.2.4 Analog ground .. 16
 4.2.5 Analog baseband I/Q signals ... 17
 4.2.6 WLAN/BT RF trace ... 18
 4.2.7 3.3 V power supply ... 19
 4.2.8 1.3 V power supply ... 22
 4.2.9 1.2 V/1.8 V power supply .. 23
 4.2.10 19.2 MHz clock signal ... 24
 4.2.11 High-Speed digital signals .. 25
 4.2.12 BPF Layer 2 GND cutout ... 26
 4.2.13 Antenna routing area ... 27
 4.2.14 FM RF trace .. 28
 4.3 Summary (Layer 1) .. 29
 4.4 Summary (Layer 2) .. 30
 4.5 Summary (Layer 3) .. 31

5 Layout Guidelines for 1:n:1 Stack Up ... 32
 5.1 Layer usage ... 32

EXHIBIT 1 ... 40

Figures

Figure 2-1 WCN3620 pin assignments – top view ... 7
Figure 3-1 Example 2:n:2 PCB Layer Stackup ... 8
Figure 3-2 Layer 1 .. 9
Figure 3-3 Layer 2 .. 9
Figure 3-4 Layer 3 .. 10
Figure 3-5 Layer 4 .. 10
Figure 4-1 APQ8016E chipset example ... 12
Figure 4-2 Component placement...13
Figure 4-3 Keep-out areas ...14
Figure 4-4 WCN3620 outer layer keep-out areas...15
Figure 4-5 Vias on WCN3620 ..15
Figure 4-6 Analog ground ...16
Figure 4-7 Layer 3 baseband IQ Signals ...17
Figure 4-8 WLAN/BT RF trace ..18
Figure 4-9 3.3 V power supply ..19
Figure 4-10 RF Trace Routing ...20
Figure 4-11 Examples of Incorrect Layout ...21
Figure 4-12 Overall 1.3 V routing ...22
Figure 4-13 1.8V Supply Routing ...23
Figure 4-14 19.2MHz Clock Signal Routing ...24
Figure 4-15 WLAN 5 wire bus on Layer 3 ...25
Figure 4-16 BT Data Signal Routing ...25
Figure 4-17 FM Digital Signal Routing ..26
Figure 4-18 Bandpass Filter ..26
Figure 4-19 Antenna Routing Area ...27
Figure 4-20 FM RF trace ..28
Figure 4-21 Summary (Layer 1) ...29
Figure 4-22 Summary (Layer 2) ...30
Figure 4-23 Summary (Layer 3) ...31
Figure 5-1 Stackup for 1:N:1 ..32

Tables

Table 1-1 Acronyms, abbreviations, and terms ..5
1 Introduction

This document’s layout examples are based on a design example schematic (LM80-P0436-27). These guidelines are required to ensure WCN performance.

1.1 Purpose

This document provides guidelines for PCB designers when creating a board containing the WCN3620 IC. It is recommended that board designers should start with the reference layout and make as few changes as possible when using WCN3620 IC.

1.2 Acronyms, abbreviations, and terms

Table 1-1 provides definitions for the acronyms, abbreviations, and terms used in this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPF</td>
<td>Bandpass Filter</td>
</tr>
<tr>
<td>BT</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock</td>
</tr>
<tr>
<td>EVM</td>
<td>Error Vector Magnitude</td>
</tr>
<tr>
<td>FEM</td>
<td>Front-End Module</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>MTP</td>
<td>Modem Test Platform</td>
</tr>
<tr>
<td>PA</td>
<td>Power Amplifier</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-Locked Loop</td>
</tr>
<tr>
<td>PMIC</td>
<td>Power Management Integrated Circuit</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFIO</td>
<td>Radio Frequency Input and Output</td>
</tr>
<tr>
<td>Rx</td>
<td>Receive</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>VDD</td>
<td>system supply voltage</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>WCN</td>
<td>Wireless Computer Network</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>XO</td>
<td>Crystal Oscillator</td>
</tr>
</tbody>
</table>
2 Pin Assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>VDD_BT_RF_1P3</td>
</tr>
<tr>
<td>4</td>
<td>VDD_BT_DA_3P3</td>
</tr>
<tr>
<td>5</td>
<td>WL_BT_RFIO</td>
</tr>
<tr>
<td>6</td>
<td>WL_CMD_SET</td>
</tr>
<tr>
<td>7</td>
<td>VDD_BT_VCO_1P3</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>VDD_WL_2GLNA_1P3</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>VDD_WL_2GPA_3P3</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>VDD_BT_BB_1P3</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
</tr>
<tr>
<td>16</td>
<td>VDD_BT_PLL_1P3</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>BT_CTL</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>VDD_IO_1P8</td>
</tr>
<tr>
<td>23</td>
<td>VDD_BT_FM_DIG_1P3</td>
</tr>
<tr>
<td>24</td>
<td>VDD_XO_1P8</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
</tr>
<tr>
<td>26</td>
<td>VDD_XO_PLL_1P3</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
</tr>
<tr>
<td>28</td>
<td>BT_DATA</td>
</tr>
<tr>
<td>29</td>
<td>VDD_DIG_1P2</td>
</tr>
<tr>
<td>30</td>
<td>XO_IN</td>
</tr>
<tr>
<td>31</td>
<td>NC</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
</tr>
<tr>
<td>33</td>
<td>BT_SSBI</td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
</tr>
<tr>
<td>35</td>
<td>GND</td>
</tr>
<tr>
<td>36</td>
<td>VDD_WL_LO_1P3</td>
</tr>
<tr>
<td>37</td>
<td>VDD_WL_2GPA_3P3</td>
</tr>
<tr>
<td>38</td>
<td>NC</td>
</tr>
<tr>
<td>39</td>
<td>GND</td>
</tr>
<tr>
<td>40</td>
<td>NC</td>
</tr>
<tr>
<td>41</td>
<td>FM_SSBI</td>
</tr>
<tr>
<td>42</td>
<td>GND</td>
</tr>
<tr>
<td>43</td>
<td>VDD_WL_UPC_1P3</td>
</tr>
<tr>
<td>44</td>
<td>GND</td>
</tr>
<tr>
<td>45</td>
<td>GND</td>
</tr>
<tr>
<td>46</td>
<td>FM_DATA</td>
</tr>
<tr>
<td>47</td>
<td>WL_BB_QN</td>
</tr>
<tr>
<td>48</td>
<td>WL_CMD_DATA0</td>
</tr>
<tr>
<td>49</td>
<td>WL_PDET_IN</td>
</tr>
<tr>
<td>50</td>
<td>FM_HS_RX</td>
</tr>
<tr>
<td>51</td>
<td>VDD_FM_VCO_1P3</td>
</tr>
<tr>
<td>52</td>
<td>VDD_FM_PLL_1P3</td>
</tr>
<tr>
<td>53</td>
<td>WL_BB_QP</td>
</tr>
<tr>
<td>54</td>
<td>WL_BB_IP</td>
</tr>
<tr>
<td>55</td>
<td>WL_CMD_DATA2</td>
</tr>
<tr>
<td>56</td>
<td>VDD_FM_RXFE_1P3</td>
</tr>
<tr>
<td>57</td>
<td>VDD_FM_RXBB_1P3</td>
</tr>
<tr>
<td>58</td>
<td>VDD_WL_PLL_1P3</td>
</tr>
<tr>
<td>59</td>
<td>WL_BB_IN</td>
</tr>
<tr>
<td>60</td>
<td>VDD_WL_BB_1P3</td>
</tr>
<tr>
<td>61</td>
<td>WL_CMD_CLK</td>
</tr>
</tbody>
</table>

Figure 2-1 WCN3620 pin assignments – top view
3 Board Information (2:n:2)

3.1 Stack up (2:n:2)

Figure 3-1 Example 2:n:2 PCB Layer Stackup

- Layer 1 – Parts placement
 - Components, RF microstrip, traces to pins on the outer rows
- Layer 2 – WCN RF ground
 - WCN ground pins and bypass capacitor grounds
- Layer 3 – WCN signals
 - Digital I/Os, analog baseband, power buses, XO, bypass caps to WCN pins on inner rows
- Layer 4 – Main PCB ground plane
4 Layout Checklist

4.1 Layout checklist

1. Component placement
2. Keep-out areas
3. VIAs
4. Analog ground
5. Analog baseband IQ signals
6. WLAN/BT RF trace
7. 3.3 V power supply
8. 1.3 V power supply
9. 1.2 V/1.8 V power supply
10. 19.2 MHz clock signal
11. High-speed digital signals
12. BPF Layer 2 GND cutout
13. Antenna routing area
14. FM RF trace
4.2 Board-level layout guidelines

One-sided board example

For a two-sided board, guidelines for trace routing under and around WCN are still valid.

WLAN IQ lines should be less than 10 cm long – they are susceptible to aggressor digital signals so keep them well isolated. Place ground via every 75 mil along with IQ lines.

Mandatory – route IQ as stripline.

Reserve area between PMIC and WCN for clean routing.
- Shared 1.3 V analog supply
 - Star route at PMIC to reduce noise leakage between ICs
- 3.3 V for WCN power amplifiers
- 1.8 V for digital I/Os
- 1.8 V for XO circuits
- Place ground via every 75 mil along with 19.2 MHz CLK trace

Figure 4-1 APQ8016E chipset example

4.2.1 Component placement

- Parts placement
 - RF matching components close to WCN pins
 - Filter matching components near the filter (critical)
 - Low-value VDD bypass capacitors close to their WCN pins (though RF matching components have higher priority)
 - WCN and its discrete components in a dedicated shield area
 - External coupler output (if used) must be isolated from the 2.4 GHz trace

Dedicated shield area for WCN and its discretes.

Short, direct RF routing; avoid or minimize layer transitions using vias.

Locate noisy board connectors away from the antennas.
Figure 4-2 Component placement

- WLAN, Bluetooth, and FM RF routing
 - RF microstrip or stripline must be used
 - RF matching becomes difficult if stripline is used between WCN and discrete components
 - Avoid frequent transitions between the layers
4.2.2 Keep-out areas

- On Layer 1, these keep-out areas cannot be routed by any signals.

Figure 4-3 Keep-out areas
In addition to these mandatory keep-out areas, layer 1 below the IC should be as clear as possible, using microvias and lower layers for routing.

Figure 4-4 WCN3620 outer layer keep-out areas

4.2.3 Vias on WCN3620

Layer 1/2:
- VIA 1-2

Layer 2/3:
- VIA 2-3

Layer 3:
- VIA3-6

Figure 4-5 Vias on WCN3620
4.2.4 Analog ground

Pin 25 and pin 35 are the analog ground pins and they need to be isolated from the other digital ground pins.

Figure 4-6 Analog ground

4.2.4.1 Ground connections

Ground connections checklist:

- Follow the mandatory keep-out areas on Layer 1 under the IC.
- There should be no Layer 1 ground pour below the IC.
- Provide a solid, continuous ground flood (WCN RF ground) on Layer 2 below the IC.
- Connect the IC ground pins and bypass capacitors’ ground pads directly to the WCN RF ground on Layer 2 using micro-vias at each pin or pad (critical).
- Using the lower layer (main PCB ground plane) for ground return increases the loop inductance and might make bypassing less effective.
4.2.5 Analog baseband I/Q signals

Critical: Baseband I/Q

- Keep the I/Q trace pairs equal length, symmetric, and well isolated. Maintain equal lengths for all signals within 40 mil.
- The resistance and capacitance on each pair should be equal; the total capacitance should be less than 10 pF.
- Crosstalk should be less than 60 dB at 50 MHz.
- Add GND with GND vias between two signal pairs every 75 mil from the WCN to the APQ chipset.
- Keep the I/Q signals away from the RF routing area, high-speed digital and clock signals.
- Use the same number of vias for each differential.

Figure 4-7 Layer 3 baseband IQ Signals
4.2.6 WLAN/BT RF trace

- Keep the RF trace at 50 Ω (critical).
- Use Layer 2 as the reference ground from the WCN to the RF connector.
- Use Layer 3 as the reference ground from the RF connector to the antenna.

Figure 4-8 WLAN/BT RF trace
4.2.7 3.3 V power supply

- The total resistance between PMIC and the WCN pins must be less than 100 mΩ (critical).
- Place C1 away from pin 5 (WL_BT_RFIO), preferably close to the C4 (critical).
- Star route 3.3 V VDD traces from the shared capacitor to pin 4 (VDD_BT_DA_3P3) and pin11 (VDD_WL_2GPA_3P3) with a minimum routing distance between pins of > 5 mm (critical).
- Instability in the 2.4 GHz Tx output may occur without this recommended star routing.

Figure 4-9 3.3 V power supply
4.2.7.1 Additional 3.3 V/1.3 V power supply layout checklist

Power distribution routing:

- 3.3 V and 1.3 V high current traces should maintain a length-to-width ratio of less than 10 to maintain a maximum 0.1 Ω IR drop from the PMIC to the WCN pins (extremely critical).
 - Failure to maintain this ratio can cause Tx EVM degradation.
- Route supply voltage rails from the PMIC to the inner layers.
- Keep all supply traces away from the RF pin 5 (WL_BT_RFIO) and RF traces.
- Isolate the 1.3 V and 3.3 V traces from each other; do not route in parallel.
- Do not run supply traces from one side of the WCN3620 through the WCN3620 to the other side; it is recommended to run the supply trace around the WCN3620 and then have a short trace from the outside directly to the WCN3620 supply pins.
- Route to bypass capacitors first and then continue route to the WCN pin.

4.2.7.2 Recommended RF trace routing and 3.3 V bypass cap placement

![Good isolation between RFIO and 3.3 V WLAN PA supply](image)

Figure 4-10 RF Trace Routing

- It is highly recommended to have good isolation between the RFIO and 3.3 V WLAN PA supply (extremely critical).
- For 2G RF trace, it is recommended to route it to the west directly and connect to the RF connector.
4.2.7.3 Examples of Incorrect Layout

Figure 4-11 shows two examples of poor isolation between RFIO and the 3.3 V WLAN PA supply.

No isolation between RFIO and 3.3 V supply! No isolation between RFIO and 3.3 V supply!

Bad example 1
Bad example 2

Figure 4-11 Examples of Incorrect Layout
4.2.8 1.3 V power supply

- The total resistance from PMIC to the WCN pins must be less than 100 mΩ (critical).
- It is recommended to have minimum 20 mil trace width with shortest length between PMIC to WCN.
- Figure 4-12 shows the overall 1.3 V routing.
4.2.9 1.2 V/1.8 V power supply

Figure 4-13 1.8V Supply Routing
4.2.10 19.2 MHz clock signal

Clock trace routing:

- Route the 19.2 MHz system clock with isolated inner-layer traces all the way from the PMIC to the WCN pin (critical).

NOTE: The PMIC 19.2 MHz clock is the only clock source for WCN3620. This signal needs to be well isolated/protected.

- Keep clock traces away from any supply, I/Q, and RF traces.
- Keep 10 mil keep-out from GND copper pour.
- 19.2 MHz clock trace should be routed away from FM RF trace to avoid FM desense at 96 MHz.
4.2.11 High-Speed digital signals

<table>
<thead>
<tr>
<th>Pad</th>
<th>Signals</th>
<th>Routing guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>WL_CMD_CLK</td>
<td>▪ WLAN 5-wire control bus</td>
</tr>
<tr>
<td>6</td>
<td>WL_CMD_SET</td>
<td>▪ Route signals in inner layers and away from RF signals, I/Q analog signals,</td>
</tr>
<tr>
<td>48</td>
<td>WL_CMD_DATA0</td>
<td>and XO signal</td>
</tr>
<tr>
<td>26</td>
<td>WL_CMD_DATA1</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>WL_CMD_DATA2</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>19.2 MHz clock signal (XO)</td>
<td>▪ Route in the inner layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Keep 10 mil keep-out from GND copper pour</td>
</tr>
<tr>
<td>18</td>
<td>BT_CTL</td>
<td>▪ BT 3-wire control/data bus</td>
</tr>
<tr>
<td>33</td>
<td>BT_SSBI</td>
<td>(9.6 MHz)</td>
</tr>
<tr>
<td>28</td>
<td>BT_DATA</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>FM_SSBI</td>
<td>▪ FM 2-wire control/data bus</td>
</tr>
<tr>
<td>46</td>
<td>FM_DATA</td>
<td>(9.6 MHz)</td>
</tr>
</tbody>
</table>

Figure 4-15 WLAN 5 wire bus on Layer 3

High-speed digital signal routing:

- Keep the high-speed digital signals of equal length or within 100 mil.
- Keep the high-speed digital signals away from any supply, I/Q, and RF traces.
- Keep 10 mil keep out from the GND copper pour.

4.2.11.1 BT digital signals

Figure 4-16 BT Data Signal Routing
4.2.11.2 FM digital signals

![Layer 2 (FM_SSBI & FM_DATA)](image1) ![Layer 3 (FM_SSBI & FM_DATA)](image2) ![Layer 2 & 3](image3)

Figure 4-17 FM Digital Signal Routing

4.2.12 BPF Layer 2 GND cutout

![Layer 1](image4) ![Layer 2](image5) ![Layer 3](image6)

Figure 4-18 Bandpass Filter
4.2.13 Antenna routing area

The antenna routing area must be as similar as possible to the one shown in Figure 4-19.

Figure 4-19 Antenna Routing Area
4.2.14 FM RF trace

- The FM matching/WAN filtering components should be placed close to the chip.
- For a Murata connector, there should be no ground copper pour on layers 1, 2, and 3.
4.3 Summary (Layer 1)

Layer 1 note:
- No ground pour below WCN3620
- BT/WL RF trace
- FM RF trace
- 1.3 V power supply trace
- 3.3 V power supply trace
- 1.8 V IO trace
- BT digital signals (BT data/BT SSBI)

Separate the ground pads of C4 and C7 and use a dedicated...
4.4 Summary (Layer 2)

Layer 2 note:
- Needs a solid/continuous ground underneath WCN3620
- Analog ground island
- 1.3 V power supply trace
- FM digital signals
- BPF ground cutout area (follow vendor’s recommendation)
4.5 Summary (Layer 3)

Layer 3 note:
- Analog ground island
- Analog IQ signals
- 1.3 V power supply trace
- 3.3 V power supply trace
- 1.2 V/1.8 V power supply trace
- XO
- WLAN 5 wire bus
- BT digital signal
- FM digital signals
5 Layout Guidelines for 1:n:1 Stack Up

5.1 Layer usage

- This guideline is created for 1-4-1 or 1-6-1 stack up.
- Use four layers designated to WCN.
- The instance name is based on the reference schematic.
 - L1 (Top): RF trace and supply
 - L2: RF ground, supply and WCN signals
 - L3: System ground
 - L4: For cleaner routing, L4 can be used for digital signals and 3.3 V/1.3 V supply if L4 is available

![Layer Diagram](image)

Figure 5-1 Stackup for 1:N:1

NOTE: Clear up all four layers around the chip before starting the work!
1. Place and route RF components and WLAN PA bypass caps.

 - Good isolation between RFIO and 3.3 V PA supply
 - **PUT GND POUR!!**
 - L1
 - L2
 - L3
 - L4
 - L2 C64
 - Place FM matching close to the chip
 - Connect shunt cap GND to inner layer and clean GND

2. Route BT 3.3 V.

 - Star route 3.3 V VDD traces from the shared capacitor to pin 4 (VDD_BT_DA_3P3) and pin 11 (VDD_WL_2GPA_3P3) with a minimum routing distance between pins of > 5 mm. Otherwise, Tx spur issue shows up
 - **NEVER DO THIS!**
3. Route 1.3 V VDDs.

4. Route 1.8 V and 1.2 V VDDs.
5. Connect PA/LNA GNDs.

Note: VIA12 to L2 for pins 1/2/8/12/17/39/44/45/10/19/20/21/42 are not shown in this drawing.

Do not connect three GNDs on top layer, if possible.

Add as many GND vias as possible.

6. Connect WL PLL/VCO GNDs.
7. Connect FM GNDs.

* Connect pin 34 with pin 39 using top layer to make room for CLK.
8. Connect BT GNDs.

a. Check point: VDD-GNDs are all connected.
9. Connect analog IQ and XO.

10. Connect CLK.
11. Connect digital signals on.

12. Connect main 1.3 V and 3.3 V line.
EXHIBIT 1

PLEASE READ THIS LICENSE AGREEMENT (“AGREEMENT”) CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND QUALCOMM TECHNOLOGIES, INC. (“QTI” “WE” “OUR” OR “US”). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, “MATERIALS”). BY USING OR COMPLETING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

1.1 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions, limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. (“QTI”) hereby grants to you a nonexclusive, limited license under QTI’s copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials. You may not use Qualcomm Technologies or its affiliates or subsidiaries’ name, logo or trademarks; and copyright, trademark, patent and any other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination of this Agreement, Sections 1.2-4 shall survive.

1.2 Indemnification. You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI (including but not limited to costs of defense, investigation and reasonable attorney’s fees) arising out of, resulting from or related to: (i) any breach of this Agreement by You; and (ii) your acts, omissions, products and services. If requested by QTI, You agree to defend QTI in connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.

1.3 Ownership. QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and nothing herein shall be deemed to grant any right to You under any of QTI’s or its affiliates’ patents. You shall not subject the Materials to any third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to support any potential patent infringement claim against QTI, its affiliates, or any of QTI’s or QTI’s affiliates’ suppliers and/or direct or indirect customers. QTI hereby reserves all rights not expressly granted herein.

1.4 WARRANTY DISCLAIMER. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT, IF ANY, ARE PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED. WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) A WARRANTY OR REPRESENTATION BY QTI, ITS LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OR (II) A WARRANTY OR REPRESENTATION BY QTI THAT ANY MANUFACTURE OR USE WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES.

1.5 LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI, QTI’S AFFILIATES OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE DELIVERY OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS AGREEMENT, EVEN IF QTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTI, QTI’s AFFILIATES AND ITS LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US$10.

2. COMPLIANCE WITH LAWS; APPLICABLE LAW. You agree to comply with all applicable local, international and national laws and regulations and with U.S. Export Administration Regulations, as they apply to the subject matter of this Agreement. This Agreement is governed by the laws of the State of California, excluding California’s choice of law rules.

3. CONTRACTING PARTIES. If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI that they have the authority to bind such entity to the terms and conditions of this Agreement.

4. MISCELLANEOUS PROVISIONS. This Agreement, together with all exhibits attached hereto, which are incorporated herein by this reference, constitutes the entire agreement between QTI and You and supersedes all prior negotiations, representations and agreements between the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations, conditions and exclusions, QTI would not have entered into this Agreement with You. Each party shall be responsible for and shall bear its own expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested this Agreement and all related documents be prepared in English.