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1 Overview 

This document is a guide for developing and optimizing OpenGL ES applications for Android on 

platforms containing Qualcomm® AdrenoÊ GPUs. OpenGL ES is a subset of the OpenGL API 

for developing 2D and 3D graphics, designed for use on embedded systems, which typically are 

constrained by processor capability, memory limitation, and power consumption limits. 

The document introduces the basics of OpenGL ES development with Adreno, detailing how to 

set up a development environment, and provides walkthroughs of sample applications. It also 

describes how to use debugging and profiling tools. 

Detailed descriptions of the Adreno-specific implementations of OpenGL ES APIs are provided, 

along with an introduction to the Android Extension Pack (AEP), and the developer tools 

provided by the Adreno SDK. 

Good design practice with OpenGL ES is discussed, followed by advice on how to optimize 

applications specifically for the Adreno hardware. 

This document is intended for application developers, with a good working knowledge of a 

modern 3D graphics API such as OpenGL ES, OpenGL, or Microsoft Direct3D. It is not intended 

as a primer for 3D graphics. 

1.1 Adreno GPU 

The Adreno GPU is built in as part of the all-in-one design of the Qualcomm® SnapdragonÊ 

processors. Accelerating the rendering of complex geometries allows the processors to meet the 

level of performance required by the games, user interfaces, and web technologies present in 

mobile devices today. 

The Adreno GPU is built purposely for mobile APIs and mobile device constraints, with an 

emphasis on performance and efficient power use. 

The original Adreno 130 variant provides support only for OpenGL ES 1.1. The Adreno 2xx 

series and onward supports OpenGL ES 2.0. The Adreno 3xx series adds support for OpenGL ES 

3.0 and OpenCL. Adreno 4xx adds support for OpenGL ES 3.11 and the AEP. 

This section outlines the various technologies and subsystems provided by the Adreno GPU to 

support the graphics developer. Best practice for using these is discussed in later chapters. 

                                                
1 Product is based on a published Khronos specification and is expected to pass the Khronos 
Conformance Testing Process when available. Current conformance status can be found at 
www.khronos.org/conformance. 



QualcommÈ AdrenoÊ OpenGL ES Developer Guide Overview 

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11 

 

1.1.1 Texture features 

Multiple textures 

Multiple texturing or multitexturing is the use of more than one texture at a time on a polygon. 

Adreno 4xx supports up to 32 total textures in a single render pass, meaning up to 16 textures in 

the fragment shader and up to 16 textures at a time for the vertex shader. Effective use of multiple 

textures reduces overdraw significantly, saves Algorithmic Logic Unit (ALU) cost for fragment 

shaders, and avoids unnecessary vertex transforms. 

To use multiple textures in applications, refer to the multitexture sample in the Adreno SDK 

OpenGL ES tutorials. 

Video textures 

More games and graphics applications today require video textures, which consist of moving 

images that are streamed in real time from a video file. Adreno GPUs support video textures. 

Video textures are a standard API feature in Android today (Honeycomb or later versions). See 

the Android documentation for further details on surface textures at 

http://developer.android.com/reference/android/graphics/SurfaceTexture.html. 

Apart from using the standard Android API as suggested, if an application requires video 

textures, the standard OpenGL ES extension can also be used. See 

http://www.khronos.org/registry/gles/ extensions/OES/OES_EGL_image.txt. 

 

Figure 1-1  Video texture example 

http://developer.android.com/reference/android/graphics/SurfaceTexture.html
http://www.khronos.org/registry/gles/%20extensions/OES/OES_EGL_image.txt
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Texture compression 

Texture compression can significantly improve the performance and load time of graphics 

applications since it reduces texture memory and bus bandwidth use. Compressed textures can be 

created using the Adreno Texture Compression and Visualization Tool and subsequently used by 

an OpenGL ES application. 

Important compression texture formats supported by Adreno 3xx are: 

Â ATC ï Proprietary Adreno texture compression format (for RGB and RGBA) 

Â ETC ï Standard OpenGL ES 2.0 texture compression format (for RGB) 

Â ETC2 ï Texture compression format that is supported in the OpenGL ES 3.0 API (for R, RG, 

RGB, and RGBA) 

Adreno 4xx adds support for ASTC LDR compression, which is made available through the 

Android Extension Pack. 

To learn more about the use of texture compression, see the Compressed Texture tutorial in the 

Adreno SDK. 

Floating point textures 

Adreno 2xx, 3xx, and onward support the same texturing features, including: 

Â Texturing and linear filtering of FP16 textures via the GL_OES_texture_half_float and 

GL_OES_texture_half_float_linear extension 

Â Texturing from FP32 textures via GL_OES_texture_float 

Through the OpenGL ES 3.0 API, Adreno 3xx and onward also includes rendering support for 

FP16 (full support) and FP32 (no blending). 

Cube mapping with seamless edges 

Cube mapping is a fast and inexpensive way of creating advanced graphic effects, like 

environment mapping. Cube mapping takes a three-dimensional texture coordinate and returns a 

texel from a given cube map (similar to a sky box). 

Adreno 3xx and onward supports seamless-edge support for cube map texture sampling. 
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Figure 1-2  Cube mapping 

3D textures 

In addition to 2D textures and cube maps, there is a ratified OpenGL ES 2.0 extension for 3D 

textures called GL_OES_texture_3D. This extension allows 3D texture initialization and use for 

volumetric rendering purposes. This is a core functionality starting with OpenGL ES 3.0. 

 

Figure 1-3  3D texture 

Large texture size 

Adreno 330 supports texture sizes up to 8192x8192x8192. Depending on memory availability , 

Adreno 420 can address textures of resolution up to 16384x16384x16384. 

sRGB textures and render targets 

sRGB is a standard RGB color space created cooperatively by Hewlett-Packard and Microsoft in 

1996 for use on monitors, printers, and the Internet. Smartphone and tablet displays today also 

assume sRGB (nonlinear) color space. To get the best viewing experience with correct colors, it 

is important that the color space for render targets and textures matches the color space for the 

display, which is sRGB. Unfortunately, OpenGL ES assumes linear or RGB color space by 
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default. As Adreno 3xx and 4x support sRGB color space for render targets as well as textures, it 

is possible to ensure a correct color viewing experience. 

PCF for depth textures 

Adreno 3xx and 4x have hardware support for the OpenGL ES 3.0 feature of Percentage Closer 

Filtering (PCF). A hardware bilinear sample is fetched into the shadow map texture, which 

alleviates the aliasing problems that can be seen with shadow mapping in real time applications. 

1.1.2 Visibility processing 

Early Z rejection 

Early Z rejection provides a fast occlusion method with the rejection of unwanted render passes 

for objects that are not visible (hidden) from the view position. Adreno 3xx and 4xx can reject 

occluded pixels at up to 4x the drawn pixel fill rate. 

Figure 1-4 shows a color buffer represented as a grid, and each block represented as a pixel. The 

rendered pixel area on this grid is colored black. The Z-buffer value for these rendered black 

pixels is 1. If trying to render a new primitive onto the same pixels of the existing color buffer 

that has the Z-buffer value of 2 (as shown in the second grid with green blocks), the conflicting 

pixels in this new primitive will be rejected as shown in the third grid representing the final color 

buffer. Adreno 3xx and 4x can reject occluded pixels at up to four times the drawn pixel fill rate. 

 

Figure 1-4  Early Z rejection 

To get maximum benefit from this feature, QTI recommends drawing a scene with primitives 

sorted out from front-to-back; i.e., near-to-far. This ensures that the Z-reject rate is higher for the 

far primitives, which is useful for applications that have high-depth complexity. 

FlexRenderÊ (hybrid deferred and direct rendering mode) 

QTI introduced its new FlexRender solution as part of Adreno 3x and 4x. FlexRender refers to 

the ability of the GPU to switch between indirect rendering (binning or deferred rendering) and 

direct rendering to the frame buffer. 

There are advantages to both the direct and deferred rendering modes. The Adreno 3x and 4x 

GPUs were designed to maximize performance by switching between the two modes in a 
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dynamic fashion. This works by the GPU analyzing the rendering for a given render target and 

selecting the mode automatically. 

The deferred mode rendering mechanism of the Adreno GPU uses tile-based rendering and 

implements a binning approach is used to create bins of primitives are processed in each tile. The 

first pass associates each primitive with a set of BinIDs and back-facing information. This pass is 

done once per frame. In the second pass, these BinIDs are used to trivially reject the primitives 

that fall outside the current bin being rendered and perform early back-face culling. 

The second pass runs once per bin. Each bin is rendered to the GMEM. Then, each bin is resolved 

to the render surface in memory. The deferred mode rendering mechanism is shown in further 

detail in Figure 1-5. 

 

Figure 1-5  Deferred style of rendering with Adreno 3xx and 4x 

1.1.3 Shader support 

Unified shader architecture 

All Adreno GPUs support the Unified Shader Model, which allows for use of a consistent 

instruction set across all shader types (vertex and fragment shaders). In hardware terms, Adreno 

GPUs have computational units, e.g., ALUs, that support both fragment and vertex shaders. 

Adreno 4xx uses a shared resource architecture that allows the same ALU and fetch resources to 

be shared by the vertex shaders, pixel or fragment shaders, and general purpose processing. The 

shader processing is done within the unified shader architecture, as shown in Figure 1-6. 
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Figure 1-6  Unified shader architecture 

Figure 1-6 shows that vertices and pixels are processed in groups of four as a vector, or a thread. 

When a thread stalls, the shader ALUs can be reassigned. 

In unified shader architecture, there is no separate hardware for the vertex and fragment shaders, 

as shown in Figure 1-7. This allows for greater flexibility of pixel and vertex load balances. 

 

Figure 1-7  Flexibility in shader resources ï Unified shader architecture 

The Adreno 4xx shader architecture is also multithreaded, e.g., if a fragment shader execution 

stalls due to a texture fetch, the execution is given to another shader. Multiple shaders are 

accumulated as long as there is room in the hardware. 

No special steps are required to use the unified shader architecture. The Adreno GPU intelligently 

makes the most efficient use of the shader resources depending on scene composition. 

Scalar architecture 

Adreno 4xx has a scalar component architecture. The smallest component Adreno 4xx can 

support natively is a scalar component. This results in more efficient hardware resource use for 

processing scalar components, and it does not waste a full vector component to process the scalar. 

The scalar architecture of Adreno 4xx can be twice as power-efficient and deliver twice the 

performance for processing a fragment shader that uses medium-precision floating point 
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(mediump), compared to other mobile GPUs today, which use vector architecture. For Adreno 4x, 

mediump is a 16-bit floating point and highp is a 32-bit floating point. 

1.1.4 Other supported features 

Index types 

A geometry mesh can be represented by two separate arrays, one array holding the vertices, and 

another holding sets of three indices into that array, which together define a triangle. 

Adreno 4xx natively supports 8-bit, 16-bit, and 32-bit index types. Most mobile applications use 

16-bit indices. 

Multisample anti-aliasing (MSAA) 

Anti-aliasing is an important technique for improving the quality of generated images. It reduces 

the visual artifacts of rendering into discrete pixels. 

Among the various techniques for reducing aliasing effects, multisampling is efficiently 

supported by Adreno 4x. Multisampling divides every pixel into a set of samples, each of which 

is treated like a ñmini-pixelò during rasterization. Each sample has its own color, depth, and 

stencil value. And those values are preserved until the image is ready for display. When it is time 

to compose the final image, the samples are resolved into the final pixel color. Adreno 4xx 

supports the use of two or four samples per pixel. 

 

Figure 1-8  MSAA 

Vertex texture access or vertex texture fetch 

With the advantage of having shared resources to process vertex and fragment shaders, in the 

Adreno GPUs the vertex shader has direct access to the texture cache. It is simple to implement 

vertex texture algorithms for function definitions, displacement maps, or lighting level-of-detail 

(LoD) systems on Adreno GPUs. Vertex texture displacement is an advanced technique that is 

used to render realistic water in games on a desktop and for consoles. The same can now be 

implemented in applications running on Adreno GPUs. 

The following is an example of how to do a texture fetch in the vertex shader: 

 

/////verte x shader  

attribute vec4 position;  
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attribute vec2 texCoord;  

uniform sampler2D tex;  

void main() {  

float offset = texture2D(tex, texCoord).x;  

é..  

gl_Position = vec4(é.);  

}  

1.1.5 Adreno APIs 

Adreno 4xx supports Khronos standard APIs including: 

Â OpenGL ES 1.x (fixed function pipeline) 

Â OpenGL ES 2.0 (programmable shader pipeline) 

Â OpenGL ES 3.0 

Â EGL 

Â OpenCL 1.1e 

Adreno 4xx additionally supports: 

Â OpenGL ES 3.1 (most recent version of this API) 

Â AEP 

Â OpenCL 1.2full 

Along with the OpenGL ES APIs, the extensions to these APIs are also supported. 

In addition to the Khronos standard APIs, Adreno 4xx supports Microsoft Direct3D 11 API with 

Feature Level 9_3. Adreno 4xx supports Direct3D 11 with Feature Level 11_2. Discussion of 

these APIs is outside the scope of this document. 

1.2 OpenGL ES 

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D graphics on 

embedded systems. It consists of well-defined desktop OpenGL subsets, creating a flexible and 

powerful low-level interface between software and graphics acceleration. 

1.2.1 Open GL ES versions 

The following sections outline the different versions of OpenGL ES that are available and how 

they relate to OpenGL. They also detail the main functional differences between them and 

optimizations that can be utilized by developers. 

OpenGL ES 1.x 

Defined relative to the OpenGL 1.5 specification, OpenGL ES 1.x is designed for fixed function 

hardware, and emphasizes hardware acceleration of the API. It provides enhanced functionality, 

improved image quality, and optimizations to increase performance while reducing memory 

bandwidth usage to save power. 

For more about the APIs and specifications, see https://www.khronos.org/opengles/1_X/. 

https://www.khronos.org/opengles/1_X/
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OpenGL ES 2.x 

Defined relative to the OpenGL 2.0 specification, OpenGL ES 2.x is designed for programmable 

hardware and focuses on a programmable 3D graphics pipeline, providing the ability to create 

shader and program objects and to write vertex and fragment shaders. It does not support the 

fixed function transformation and fragment pipeline of OpenGL ES 1.x. 

For more information, see https://www.khronos.org/api/opengles/2_X. 

OpenGL ES 3.x 

OpenGL ES 3.x is backwards compatible with 2.x and 1.x. It provides enhancements to the 

rendering pipeline to enable acceleration of advanced visual effects, a new version of the 

OpenGL ES Shading Language, and an enhanced texturing functionality, among other things. 

For a complete description of the API, see https://www.khronos.org/api/opengles/3_X. 

1.3 About Android 

Android is a mobile operating system based on the Linux kernel and is currently developed by 

Google. 

1.3.1 OpenGL ES support on Android 

Android supports several versions of the OpenGL ES API. 

Â OpenGL ES 1.0 and 1.1 ï This API specification is supported by Android 1.0 and higher. 

Â OpenGL ES 2.0 ï This API specification is supported by Android 2.2 (API level 8) and 

higher. 

Â OpenGL ES 3.0 ï This API specification is supported by Android 4.3 (API level 18) and 

higher. 

Â OpenGL ES 3.1 ï This API specification is supported by Android 5.0 (Lollipop). 

1.3.2 Android and OpenGL ES on Adreno 

The Adreno GPU versions support the use of different levels of the OpenGL ES specification. For 

each level of the OpenGL ES specification, there is also a minimum version of the Android OS 

required, e.g., to use OpenGL ES 3.0, it requires at least Adreno 3xx and at least Android 4.3 

(Jelly Bean). Table 1-1 lists these requirements. 

Table 1-1  Adreno, OpenGL ES, and Android versions 

Adreno ver OpenGL ES ver supported Android ver required 

Adreno 1xx 1.1 Android 1.0 (Alpha) 

Adreno 2xx 2.0 Android 2.2 (Froyo) 

Adreno 3xx 3.0 Android 4.3 (Jelly Bean) 

Adreno 4xx 3.1 Android 5.0 (Lollipop) 

https://www.khronos.org/api/opengles/2_X
https://www.khronos.org/api/opengles/3_X
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2 OpenGL ES 2.0 with Adreno 

2.1 Development environment 

Before developing OpenGL ES applications, it is necessary to set up a suitable development 

environment. A development system is needed, which can be based on Windows, Linux, or OSX. 

There must also be a target system for testing the application. For the purposes of this document, 

that means an Android device or emulator. 

2.1.1 Development system 

There are a number of software pieces that are required to create the development toolchain. The 

required software packages are as follows. 

Adreno SDK 

The Adreno SDK offers an OpenGL ES emulator, demos and tutorials, and an SDK browser that 

allows the running, building, and deploying of these samples to the device with a single click. 

NOTE: The OpenGL ES emulator relies on the implementation of desktop OpenGL on the host system, 

as shown in Table 2-1. 

Table 2-1  OpenGL versions required by the emulator 

OpenGL ES ver Desktop OpenGL ver needed 

OpenGL ES 2.0 OpenGL 2.0 

OpenGL ES 3.0 OpenGL 3.3 

OpenGL ES 3.1 OpenGL 4.3 

Tip 

Be sure to update to the latest graphics driver versions on the development system. 

Android developer tools 

When developing using Eclipse, download and install Android Developer Tools (ADT), which is 

a plug-in for Eclipse that provides a full suite of Android-specific tools, including XML editors, 

GUI builders, and debugging and profiling tools for both the emulator and the device. 

NOTE: ADT comes in a bundle that includes the core Android SDK. The Android SDK provides the API 

libraries and developer tools necessary to build, test, and debug applications for Android. If  ADT 

is not installed, the standalone version of the Android SDK is necessary instead. 
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Android NDK 

The Android NDK is a toolset that allows code implementation using native languages, such as C 

and C++. Some of the Adreno SDK samples are developed in this manner, so it is necessary to 

install the NDK to take advantage of these samples. 

Apache Ant 

Apache Ant is a toolset used to aid in the building of software packages, most usually Java-based. 

It is used in Android to create APK packages, and is needed as part of any general Android 

development environment 

Java development kit 

The Java Development Kit (JDK) is a prerequisite for running Ant and many other development 

tools. 

2.1.2 Target system 

When deploying and testing an application, there are three possibilities as discussed here. 

Adreno SDK emulator 

If there is no available hardware, or if it is necessary to test against a pure implementation of the 

OpenGL ES API, then the Adreno SDK emulator, along with the associated profiler tool, allows 

for debugging and optimization of applications quickly and without large hardware outlay costs. 

Existing Adreno-based consumer devices 

The Adreno GPU is used in a broad range of tablet and mobile phone devices from major 

manufacturers. There are too many devices to list here, but it is not difficult to find a modern 

Android device running any given version of the Adreno GPU. 

QTI Snapdragon MDP 

To gain access to the very latest Adreno GPUs and the most advanced multimedia technologies, it 

is necessary to go beyond the normal mobile phone and tablet devices available in the consumer 

marketplace. 

QTI provides a mobile development board designed specifically to aid development of OpenGL 

ES applications on Adreno. The Snapdragon Mobile Development Platform (MDP) offers both 

mobile and tablet options, and provides early access to a high-performance Android platforms for 

development, testing, and software optimization. The development devices contain preinstalled 

development and optimization software, e.g., the Snapdragon performance visualizer, which 

allows performance monitoring, profiling, and debugging. This helps to easily locate and resolve 

performance bottlenecks. 

For more information about the currently available MDP devices, see https:// 

developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-

development-platform-mdp. 

https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
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2.2 Setup instructions 

This section lists the steps needed to install the software toolchain for building OpenGL ES 

applications for Android. This material also provides information and instructions on how to set 

up a working toolchain, which can lead to the building, installation, and running of any sample 

application in the Adreno SDK. 

2.2.1 Android development on Windows 

These instructions cover the setup of a development environment on a Windows x64 

development system with an Android target device. If a different platform is necessary for the 

development system, the details of the installation may differ. 

Install the Adreno SDK together with a number of Android development packages. These 

instructions aim to get a development project up and running in the shortest time possible. 

2.2.1.1 Set up the Adreno SDK 

1. Download the Adreno SDK from the Qualcomm Developer Network website at 

https://developer.qualcomm.com/download/. 

2. Extract all files to a folder, e.g., C:\AdrenoSDK_Windows. 

3. Follow the instructions in the extracted README.txt file. Make sure the packages specified 

are installed before continuing. 

4. Execute AdrenoSDK_Installer.exe. Choose a folder name such as AdrenoSDK in which to 

install the SDK. 

5. Run AdrenoSDK\Bin\Browser.exe to launch the SDK browser. Use this to navigate to the 

SDK documentation and sample applications. 

2.2.1.2 ADT 

1. Download the Windows 64-bit ADT bundle from the Android Developers site at 

https://developer.android.com/sdk/index.html. 

2. Extract all files into the Android directory, e.g., C:\Android\adt-bundle-windows-

x86_64-20140702. 

NOTE: Choose the latest bundle when downloading. The dated version number will likely be 

different. 

3. Add the following to the Windows PATH environment variable: 

a. C:\Android\adt-bundle-windows-x86_64-20140702\sdk\tools 

b. C:\Android\adt-bundle-windows-x86_64-20140702\sdk\platform-tools 

2.2.1.3 Android NDK 

1. Download the Windows 64-bit NDK from the Android Developers site at 

http://developer.android.com/tools/sdk/ndk/index.html. 

2. Extract all files into the Android directory, e.g., C:\Android\android-ndk-r9b. 

https://developer.qualcomm.com/download/
https://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
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3. Add the environment variable ANDROID_NDK_ROOT=C:\Android\android-ndk-r9b to the 

Windows system. 

NOTE: This path may change depending on the latest version number of the NDK. 

4. Add this to the Windows PATH environment variable %ANDROID_NDK_ROOT%. 

2.2.1.4 JDK 

1. Download the Windows x64 Oracle JDK from the Oracle Technology Network site at 

http://www.oracle.com/technetwork/java/javase/downloads/. 

2. Install the JDK to C:\Program Files\Java. 

3. Add this environment variable to the Windows system JAVA_HOME=C:\Program 

Files\Java\jdk1.8.0_05. 

NOTE: This path may change depending on the latest version number of the JDK. 

4. Add this entry to the PATH variable %JAVA_HOME%\bin. 

2.2.1.5 Ant 

1. Download Ant from the Apache Ant website at http://ant.apache.org/bindownload.cgi. 

2. Extract all files to C:\Ant\apache-ant-1.9.4. 

3. Add the environment variable ANT_HOME=C:\Ant\apache-ant-1.9.4. 

NOTE: This path may change depending on the latest version number of Ant. 

4. Add this entry to the PATH variable %ANT_HOME%\bin. 

2.2.1.6 Build and run sample application 

1. Open a command prompt. 

2. Navigate to the Android\jni directory in one of the Adreno SDK sample applications, e.g., 

cd\AdrenoSDK\Development\Samples\OpenGLES30\DepthOfField\Android\jni. 

3. Run the ndk-build command. 

4. Navigate up one level to the Android directory (cd ..). 

5. Run the InstallAssets.bat script to copy the sample assets. 

6. Remaining in the Android directory, use the Android command to update the project for Ant 

Android update project -p -t android-XX, where android-XX is the Android SDK version 

installed, e.g., android-20. 

7. Use Ant to create the APK for the sample application ant debug or ant release. 

8. Install the sample application on the connected device, i.e., ant installed or ant install. 

9. Run the application on the device. 

http://www.oracle.com/technetwork/java/javase/downloads/
http://ant.apache.org/bindownload.cgi
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2.3 Walkthrough of sample applications 

This section discusses some key tasks that may be faced in the development of an OpenGL ES 

application. In particular: 

Â How to set up an OpenGL ES context under Android 

Â How to detect the Adreno GPU and determine its version 

Â How to detect available OpenGL ES extensions 

Â How to implement basic Phong-Blinn lighting 

Â How to retrieve the values of OpenGL ES constants for the rendering context 

This section illustrates these points by referencing the source code of one of the example 

applications included with the Adreno SDK called Lighting. This section also illustrates the other 

points with code snippets. 

2.3.1 Create an ES 2.0 context on Android 

When developing for the Android platform, an OpenGL ES context must be created using the 

EGL API. In the case of the sample applications provided in the Adreno SDK, this is done by 

common framework code, which is shared across the various sample applications. This is handled 

by the Android implementation of the framework as discussed in this section. Some basic 

information on EGL for understanding the code is also provided. For more detailed information 

about EGL, see: 

Â EGL Reference Pages at http://www.khronos.org/registry/egl/sdk/docs/man/ 

Â EGL Specification at http://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf 

The initialization process is handled by the CFrmAppContainer::InitializeEgl method, 

implemented in the file SDK\Development\Samples\Framework\Android\ 

FrmApplication_Platform.cpp. If the method returns TRUE, the initialization was performed 

successfully and an OpenGL ES rendering context has been bound to the calling thread. 

This method first initializes an EGLDisplay instance to represent the default display. EGLDisplay 

is an abstraction of a display on which graphics may be drawn. Each EGLDisplay instance 

usually corresponds to a single physical screen. All other EGL objects are children of an 

EGLDisplay instance. For this, the OpenGL ES context is represented by an EGL object of type 

EGLContext, so it is necessary to initialize an EGLDisplay before proceeding. 

 

EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);  

eglInitialize(display,                

NULL,    /* major */  

              NULL);   /* minor */  

NOTE: The last two arguments of eglInitialize are optional. If pointers are provided to EGLint variables, 

they are filled in with the major and minor version numbers of the EGL implementation provided 

by the driver. 

Before creating an OpenGL ES context, answer a few questions: 

Â What capabilities should be provided by the default frame buffer? 

Â How many bits should its color buffer use per component? 

http://www.khronos.org/registry/egl/sdk/docs/man/
http://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf
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Â Should it include a depth buffer? If so, how many bits should it use per pixel? 

Â Should it include a stencil buffer? If so, how many bits should it use per pixel? 

Â Which OpenGL ES version is needed? 

Â To where should the output from the rendering process be directed? Should it be to a window, 

or to some kind of off-screen render target? 

The underlying hardware usually supports rendering to a number of different frame buffer 

configurations. To query which of these match the needs of the application, the EGL 

implementation must provide a list of EGLConfig instances that represent supported 

configurations. 

The code snippet below defines an ñattribute listò, which is a key/value array terminated by a 

single EGL_NONE entry. The attribute list specifies requirements for the frame buffer 

configuration. Here, only a handful of attributes are specified. There are many other properties 

that could be included in the list. Since they are left out, EGL assumes that they take on the 

default values defined in the EGL specification. 

The attribute list is passed as one of the parameters to the EGL API function eglChooseConfig. 

This function returns a list of EGLConfig instances that meet the requirements. These are sorted 

on best match to the requested attributes. If the list size is limited to a single entry, it is 

guaranteed to retrieve the best matching configuration. 

 

EGLConfig config;  

EGLint    configAttribs[] =  

{  

    EGL_SURFACE_TYPE, EGL_WINDOW_BIT, 

    EGL_RED_SIZE,        5,  

    EGL_GREEN_SIZE,      6,  

    EGL_BLUE_SIZE,       5,  

    EGL_DEPTH_SIZE,      16,  

    EGL_STENCIL_SIZE,    8,  

#ifdef _OGLES3  

    // this bit opens access to ES3 functions on  

    // QCOM hardware pre - Android support for ES3  

    EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT_KHR,      

#else  

    EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, 

#endif  

    EGL_NONE /* terminator */  

};  

eglChooseCon fig(display,                  

configAttribs,                &config,  

                1,          /* config_size */  

               &numConfigs);  
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Also make sure that the dimensions and the pixel format of the native window buffers matches 

the image data that is rendered. Since it is working with native code, do this by calling 

ANativeWindow_setBuffersGeometry. The native visual ID is retrieved from the selected 

configuration and defines the pixel format in a way that is guaranteed to be understood by 

ANativeWindow_setBuffersGeometry. 

 

eglGetConfigAttrib(display,                     

config,                     

EGL_NATIVE_VISUAL_ID,  

                  &format);  

ANativeWindow_setBuffersGeometry(      

m_pAndroidApp - >window,     ANativeWindow_getWidth  

(m_pAndroidApp - >window),  

     ANativeWindow_getHeight(m_pAndroidApp - >window),      

format);  

 

To create an OpenGL ES rendering context, it is necessary to supply draw and read surfaces. 

Given that it is an OpenGL ES context that EGL is being asked to create, this means: 

Â Draw surface corresponds to the surface that all draw calls operating on the default frame 

buffer will rasterize to 

Â Read surface corresponds to the surface that all read calls operating on the default frame 

buffer will take their data from 

In this case, a window surface is being created since the application must render to an Android 

window. In EGL, window surfaces are always double-buffered. 

To create a surface, provide the EGLDisplay handle, as well as the EGLConfig instance, which 

tells EGL the requirements for the object to be created. It is possible to pass an attribute list to 

further customize the surface behavior, but in this case it is not necessary. 

 

EGLSurface surface = eglCreateWindowSurface(      

display,     config,  

    m_pAndroidApp - >window,      

NULL); /* attrib_list */  

 

All  necessary EGL objects are now available to create an OpenGL ES context. Call the 

eglCreateContext function passing the EGLDisplay and EGLConfig created earlier. Since the 

context does not need to share its name space with any other rendering context, set the third 

argument to NULL. 

NOTE: In the attribute list passed to eglCreateContext, the EGL_CONTEXT_CLIENT_VERSION 

property is set to 2. The interpretation of this is that EGL creates a context for the highest 

OpenGL ES version that is backwards compatible with the requested version and is supported by 

the driver. 
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The eglCreateContext call returns an OpenGL ES context instance but does not bind it to the 

current thread; that is done by the eglMakeCurrent call in the next line. As shown in the following 

code snippet, the call uses the EGLSurface instance created earlier as both draw and read 

surfaces. After the eglMakeCurrent call completes successfully, the application can start issuing 

OpenGL ES calls from the thread that called eglMakeCurrent. 

 

EGLint contextAttribs[] =  

{  

    EGL_CONTEXT_CLIENT_VERSION, 2,  

    EGL_NONE  /* terminator */  

};  

EGLContext context = eglCreateContext(      

display,     config,     NULL,             

/* share_context */     contextAttribs);  

   if (eglMakeCurrent(display,                     

surface, /* draw */                     

surface, /* read */                     

context) == EGL_FALSE) {     return  

FALSE; }  

2.3.2 Adreno GPU detection 

If the application needs to check whether an Adreno GPU is present, it can: 

1. Call glGetString(GL_RENDERER) within an active rendering context to retrieve a string 

containing platform-specific information about the active renderer. 

2. Check if the retrieved string contains the substring Adreno. 

The Adreno GPU version is also found in the GL_RENDERER string, following the ñAdrenoò 

keyword. 

The following code from the PlatformDetect sample application shows how this can be done. It 

parses the GL_RENDERER string and uses a text output function to display the results. This code 

is found in the file scene.cpp, method CSample::DetectAdreno: const GLubyte* renderer = 

glGetString(GL_RENDERER);. 

 

const char* pos = strstr((char *) renderer, "Adreno");  

if (pos) {   ShowText("Adreno GPU detected \ n");   pos  

+= s trlen("Adreno");   if (*pos == ' ') ++pos;   if  

(!strncmp(pos, "(TM)", strlen("(TM)")))   {     pos +=  

strlen("(TM)"); // Ignore TM marker   }  

  if (*pos == ' ') ++pos;    

ShowText("Adreno version: %s \ n", pos); }  

else {  

  ShowText("Adreno GPU not detect ed\ n");  

}  
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2.3.3 Detect supported ES extensions 

Depending on the running version of OpenGL ES, there are two ways of retrieving a list of 

extensions supported by the driver. 

Â Under OpenGL ES 2.0 (and later), retrieve the list of extensions by calling: 

 

const GLubyte* extensions = glGetString(GL_EXTENSIONS);  

Bind the thread to a rendering context before making this call. It returns a NULL-terminated 

string containing the list of extensions supported by the active OpenGL ES implementation. 

The extensions are delimited by a single space character. The number of extensions present is 

also available through the OpenGL ES constant value GL_NUM_EXTENSIONS, which can 

be queried with a glGetIntegerv call. 

NOTE: Be aware that the extensions string can be large. The application must never assert that the 

string be a certain maximum size, or limit  the number of extensions to a certain number. 

The Platform Detect sample application in the Adreno SDK was written for OpenGL ES 2.0, 

and it uses the above method to list all the extensions supported. The code to retrieve and 

parse the GL_EXTENSIONS string, from the file scene.cpp, method 

CSample::ListExtensions is as follows. 

 

const char* extensions = (const char *)  

glGetString(GL_EXTENSIONS); for (int posStart = 0, posCurrent = 0;  

tr ue; ++posCurrent) {   char c = extensions[posCurrent];   if (c  

== ' ' || c == 0)   {     if (posCurrent > posStart)     {        

ShowText("Extension: %.*s \ n", posCurrent -  posStart,            

extensions + posStart);     }     if (c == 0)     {       brea k;  

// reached the terminating EOS character  

    }  

  posStart = posCurrent + 1; // next extension will  start        

      // after the space character  

  }  

}  

Â Things are simpler when using OpenGL ES 3.0 or later, where a new function called 

glGetStringi is introduced. This function allows requests for each individual extension name 

by index number, meaning that it is no longer necessary to write string-parsing code. 

In this case, the snippet above could be replaced by the following code: 

 

glGetIntegerv(GL_NU M_EXTENSIONS, &n_extensions);  

for (int n_extension = 0;           

n_extension < n_extensions;         

++n_extension) {   const GLubyte*  

extension;  

  extension = glGetStringi(GL_EXTENSIONS, n_extension);  

  ShowText("Extension: %s \ n", extension);  

}  



QualcommÈ AdrenoÊ OpenGL ES Developer Guide OpenGL ES 2.0 with Adreno 

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29 

 

2.3.4 Implementation of Blinn-Phong lighting 

The simulation of light transfer is a broad subject that cannot be covered in depth in this 

developer guide; instead, it focuses on the use case implemented by the Lighting sample in the 

Adreno SDK. The sample makes the following assumptions: 

Â The Blinn-Phong lighting model should be used. 

Â All meshes should be lit by light from a single direction. In other words, the rendering model 

must assume that the light source is located far away, so that all light rays are traveling in the 

same direction. 

It is encouraged to become familiar with the subject matter to get a better understanding of a 

variety of lighting models used in modern graphical applications. 

2.3.4.1 Theoretical introduction 

The standard lighting equation is one way to compute the contribution made by scene lighting to 

the meshes rendered by GLSL applications. Back in OpenGL ES 1.1, it was exposed to 

applications as part of the fixed-function rendering pipeline. From OpenGL ES 2.0 onward, the 

fixed-function rendering pipeline is no longer supported, but the same technique can still easily 

be mapped to OpenGL ES shaders. 

The standard lighting equation is as follows: 

ὶὩίόὰὸ   ὨὭὪὪόίὩ ὧέὲὸὶὭὦόὸὭέὲ ίὴὩὧόὰὥὶ ὧέὲὸὶὭὦόὸὭέὲ
 ὥάὦὭὩὲὸ ὧέὲὸὶὭὦόὸὭέὲ   (2-1) 

 

The equation defines a local lighting modelðit focuses only on the fragment 

being processed and ignores the existence of any other geometry in the scene. 

This means that it will not produce any shadows, reflections, or refractions. 

These effects must be simulated by separate techniques that are not covered in 

this developer guide. 

In the equation, diffuse and specular factors shade the mesh, taking into account the properties of 

the point light (location and color) and the details of the shaded point (normal vector). The 

ambient contribution is a special component to account for indirect light effects. 

The geometry is also assigned a material. The material is a set of multipliers that are used in the 

computations to give the geometry a distinctive look in the scene. 

Diffuse contribution 

The diffuse component is one of the two factors used in the equation that model direct light, i.e., 

light that strikes the object directly. It represents the amount of the incoming light that scatters off 

the diffuse surface of the mesh and reaches the eye. The contribution is not affected by the 

location of the viewer, since the reflected rays are scattered randomly and it assumes a 

statistically uniform distribution. However, the position of the light source relative to the surface 

is important, because a surface that is perpendicular to the rays receives more light than a surface 

oriented at a steeper angle. 

The diffuse component therefore follows Lambertôs law, which says that the intensity of the 

reflected light is proportional to the cosine of the angle between the rays of light and the normal 

surface. For this reason, the diffuse component is sometimes referred to as Lambertian lighting. 
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This component can be calculated using the diffuse contribution equation. 

ὨὭὪὪόίὩ ὧέὲὸὶὭὦόὸὭέὲ Ὠέὸὲȟὰ  zὨὭὪὪόίὩz ὨὭὪὪόίὩ  (2-2) 

 

Where: 

Â n is the unit normal vector for the point being shaded. 

Â l is the unit light vector that points toward the light source from the shaded point. 

Â diffusematerial is the diffuse color of the material. 

Â diffuselight is the diffuse color of the light. 

Â dot(x, y) is a dot vector operation applied against the vectors x and y. 

It is important to remember to clamp the result of the dot vector operation to zero to prevent the 

point from being lit from behind. In order to make sure that the dot operation returns a cosine of 

the angle between vectors n and l, the two vectors must be of unit length. 

Specular contribution 

The specular contribution is the second factor used in the equation that models direct light. It 

represents the amount of incoming light that is reflected from the surface of the mesh and reaches 

the eye. 

Unlike the diffuse contribution, the intensity of this factor is highly dependent on the camera 

location. It is the specular contribution that gives the shiny appearance to rendered geometry. 

The Blinn-Phong model description of the specular contribution is as follows: 

ίὴὩὧόὰὥὶ ὧέὲὸὶὭὦόὸὭέὲ ὨέὸὲȟὬ ὫὰέίίὭὲὩίίάὥὸὩὶὭὥὰ  z ίὴὩὧόὰὥὶὰὭὫὬὸ z
 ίὴὩὧόὰὥὶ   (2-3) 

 

Where: 

Â n is the unit normal vector for the point being shaded. 

Â v is the view vector, i.e., a vector that points toward the eye from the shaded point. 

Â h is a special halfway vector between v and a light vector (as defined for the diffuse 

component) l, defined by the halfway vector calculation: 

 Ὤ  ὺ  ὰ Ⱦ ὰὩὲὫὸὬὺ  ὰ   (2-4) 

Â glossinessmaterial defines the glossiness of the material. Smaller values give a broader and more 

gentle fall off from the hotspot. Large values give a sharp fall off. 

Â specularlight is the specular color of the light. 

Â specularmaterial is the specular color of the material. 

Â dot(x, y) is a dot vector operation applied against the vectors x and y. 

As with the diffuse contribution, it is important to clamp the dot vector operation result to prevent 

it from going negative. 

Ambient contribution 

In the real world, the light rays emitted by light sources usually bounce off the walls many times 

before they reach the viewer. This is referred to as indirect light. The standard lighting model 
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does not track rays, so the contribution of indirect lighting must be faked. The simplest way to 

achieve this is by adding a constant value to each fragment to make up the missing energy 

contribution. This is exactly how the ambient contribution works. 

Mathematically, the ambient contribution can be described as follows: 

  ὥάὦὭὩὲὸ ὧέὲὸὶὭὦόὸὭέὲ ὥάὦὭὩὲὸ z ὥάὦὭὩὲὸ  (2-5) 

 

Where: 

Â ambient is the global ambient light value for the scene. 

Â ambientmaterial is the ambient color of the material. 

2.3.4.2 GLSL implementation in Lighting demo 

The following sections describe how the lighting theory can be put to use in GLSL shader code. 

The Lighting sample application can run in two modes. Each mode uses a slightly different pair 

of fragment and vertex shaders. 

Â Per-Vertex mode, where the lighting calculations are performed in the vertex shader ï The 

result values are then interpolated by hardware during rasterization and then saved directly to 

the render target in the fragment shader stage. 

Â Per-Pixel mode moves the actual lighting calculations to the fragment shader ï The vertex 

shader stage is still used for some of the vector computations. 

Per-Vertex mode takes less time to execute because the lighting calculations are performed on a 

per-vertex basis, i.e., less often. However, the visual quality of this approach is significantly 

lower when compared to the per-pixel approach. The difference is more obvious with lower 

levels of geometry tessellation. The shiny reflections introduced by the specular contribution take 

the biggest hit in this modeðthe highlights easily blend between vertices owing to the highly 

nonlinear nature of their behavior. 

The following sections describe how the GLSL shaders work for each of these modes. 

Per-vertex rendering mode shaders 

Both the fragment and the vertex shaders are stored in the SDK\Development\Assets\Samples\ 

Shaders\PerVertexLighting.glsl file. 

The vertex shader starts by declaring uniforms, attributes, and varyings. 

 

struct MATERIAL {      

vec4  vAmbient;      

vec4  vDiffuse;      

vec4  vSpecular; };  

uniform   mat4     g_matModelView;  

uniform   mat4     g_matModelViewProj;  

uniform   mat3     g_matNormal; uni form    

vec3     g_vLightPos; uniform   MATERIAL  

g_Material;  

attribute vec4 g_vPositionOS;  

attribute vec3 g_vNormalOS;  
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varying   vec4     g_vColor;  

 

The meaning of each of these fields is as follows: 

Â g_matModelView ï Model-view matrix; transfers a single vertex defined in object space and 

positions it relative to the viewer 

Â g_matModelViewProj ï Model-view-projection matrix; transfers a single vertex defined in 

object space to the clip space 

Â g_matNormal ï Normal matrix; used to transfer the normal vector to world space 

Â g_vLightPos ï Light position in world space 

Â g_Material ï Stores material properties for the rendered mesh 

The shader defines two input attributes: 

Â g_vPositionOS ï Input vertex data; the vertices are defined in object space 

Â g_vNormalOS ï Input normal data; the normals are defined in object space 

Finally, the vertex shader passes a single four-component vector to the fragment shader: 

Â g_vColor ï Shaded color value for the processed vertex; the final fragment value is defined 

by a weighted average of three such values, and the final outcome is directly correlated with 

the sample location within the triangle built of the three vertices 

After the inputs and outputs are defined, continue with the main entry-point implementation. 

 

void main() {  ve c4 vPositionES = g_matModelView     *  

g_vPositionOS;  vec4 vPositionCS = g_matModelViewProj *  

g_vPositionOS;  

 

Here, the input vertex position transforms into two spaces: 

Â vPositionES ï Eye space (also known as world space) 

Â vPositionCS ï Clip space 

 

 // O utput clip - space position   

gl_Position = vPositionCS;  

 

A vertex shader behavior is undefined if gl_Position is not set to any value. In this step, ensure 

the variable is set to the clip-space vertex position. 

 

 // Transform object - space normals to eye - space  vec3  

vNormal = normalize(g_matNormal * g_vNormalOS);  

The sample carries out the lighting calculations in world space. This is necessary for the specular 

component calculations to work correctly. After transforming to world space, normalize the 

vector, because the subsequent calculations require the vector to be of unit length. 

 

 // Compute intermediate vectors  vec3 vLight   
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= normalize(g_vLightPos);  vec3 vView   =  

normalize(vec3(0.0,0.0,0.0)                             

vPositionES.xyz);  vec3 vHalf   =  

normalize(vLight + vView );  

 

Here, calculate a few vectors that are necessary for the actual light calculations: 

Â vLight ï The light vector; note that the demo allows the user to move the light during 

runtime, so for simplicity and tutorial consistency, use the light position here to calculate the 

actual light vector. 

Â vView ï The view vector; assume the camera to be located at the origin of the world space. 

Â vHalf ï The half vector; calculated as described in Section 2.3.4.1 in the equation for halfway 

vector calculation. 

 

 // Compute the lighting in eye - space  float fDiffuse   

=     max(0.0, dot(vNormal, vLight));  float fSpecular  

= pow(max(0.0, dot(vNormal, vHalf) ),                      

g_Material.vSpecular.a);  

 

This part calculates the diffuse and specular contributions. The computations map 

straightforwardly to the notes above. Note that: 

Â Max operations make sure the result values never go below zero. 

Â The alpha channel of g_Material.vSpecular stores the glossiness factor. 

 

 // Combine lighting with the material properti es   

g_vColor.rgba  = g_Material.vAmbient.rgba;   

g_vColor.rgba += g_Material.vDiffuse.rgba * fDiffuse;   

g_vColor.rgb  += g_Material.vSpecular.rgb * fSpecular;  

}  

 

In the final part of the vertex shader, take the computed standard light equation contributions and 

multiply them by material-specific values. Then, sum up all values, which gives the final shaded 

color for the vertex. Values for each sample are interpolated between vertices. 

Given that it is describing the per-vertex shading, the fragment shader is as follows: 

 

varying vec4 g_vColor;  

void main() {      

gl_FragColor = g_vColor; }  

The shader takes the interpolated color value and stores it in the render target at index zero. Since 

the demo is written for OpenGL ES 2.0, the gl_FragColor variable is used here, which always 

maps to draw buffer at index zero. 
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Per-pixel rendering mode shaders 

The shaders used in per-fragment rendering mode work as follows. 

Start with the vertex shader, which is expected to be rather lightweight; it should only output 

vectors that can be linearly interpolated across the primitive surface. It should not perform any 

lighting-specific computations, since those will be executed on a per-fragment level. 

 

uniform   mat4 g_matModelView;  

uniform   mat4 g_matModelViewProj;  

uni form   mat3 g_matNormal;  

attribute vec4 g_vPositionOS;  

attribute vec3 g_vNormalOS;  

varying   vec3 g_vNormalES;  

varying   vec3 g_vViewVecES;  

void main() {  vec4 vPositionES = g_matModelView     *  

g_vPositionOS;  vec4 vPositionCS = g_matModelViewProj *  

g_vPositionOS;  

 // Transform object - space normals to eye - space   

vec3 vNormalES = g_matNormal * g_vNormalOS;  

 // Pass everything off to the fragment shader   

gl_Position  = vPositionCS;  g_vNormalES  =  

vNormalES.xyz;  

 g_vViewVecES = vec3(0.0,0.0,0.0) -  vPositionES.xyz;  

}  

 

The shader outputs the normal vector and the view vector, and also sets the gl_Position to the 

vertex position after transforming it to clip space. 

The fragment shader for the per-pixel rendering mode appears as follows. 

 

struct MATERIAL {      

vec4  vAmbient;      

vec4  vDiffuse;      

vec4  vSpecular; };  

uniform MATERIAL g_Material;  

uniform vec3     g_vLightPos;  

varying vec3     g_vViewVecES;  

varying vec3     g_vNormalES;  

void main() {  // Normalize per - pixel  

vectors  v ec3 vNormal =  

normalize(g_vNormalES);  vec3 vLight  =  

normalize(g_vLightPos);  vec3 vView   =  

normalize(g_vViewVecES);  vec3 vHalf   =  

normalize(vLight + vView);  

 // Compute the lighting in eye - space  float fDiffuse   
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=     max(0.0, dot(vNormal, vLight ));  float fSpecular  

= pow(max(0.0, dot(vNormal, vHalf) ),                        

g_Material.vSpecular.a);  

 // Combine lighting with the material properties   

gl_FragColor.rgba  = g_Material.vAmbient.rgba;   

gl_FragColor.rgba += g_Material.vDiffuse.rgba *  fDiffuse;   

gl_FragColor.rgb  += g_Material.vSpecular.rgb * fSpecular;  

}  

 

This should look familiar. The fragment shader starts by normalizing the interpolated vectors, 

which is important, because even though they were initially at unit length, the interpolation 

process may have changed their magnitude. Given that the dot vectors are used to obtain the 

cosine of the angle between the two vectors, ensure that the vectors are always normalized. 

The remaining calculations appear as if they were taken straight from the vertex shader from the 

per-vertex rendering mode implementation. The only difference is that they are now executed on 

a per-fragment basis, instead of per-vertex. This directly translates to an improved visual 

experience, at the cost of significantly higher hardware utilization. 

2.3.5 Retrieving ES constant values 

Once a rendering context is bound to the thread and makes it active, the functions listed in Table 

2-2 retrieve OpenGL ES constant values. 

Table 2-2  Getter functions in OpenGL ES 

Getter function Available in ES 2.0? Available in ES 3.0? Available in ES 3.1? 

glGetBooleanv ṉ ṉ ṉ 

glGetBooleani_v ṍ ṍ ṉ 

glGetFloatv ṉ ṉ ṉ 

glGetInteger64i_v ṍ ṉ ṉ 

glGetInteger64v ṍ ṉ ṉ 

glGetIntegeri_v ṍ ṉ ṉ 

glGetIntegerv ṉ ṉ ṉ 

 

The getter function name consists of the glGet prefix, a part that indicates the result format, and a 

suffix v or i_v. The suffix i_v indicates that the getter works for indexed states. 

NOTE: Using an indexed getter for a nonindexed state is not allowed and results in an error. 

Every item of the OpenGL ES state has a base format in which the corresponding value is stored. 

However, using a getter for a different format is permitted. In the case of a format mismatch, the 

base value is converted to the format corresponding to the getter used. 

The PlatformDetect sample application from the Adreno SDK demonstrates how to retrieve the 

constant maximums and ranges defined in the OpenGL ES 2.0 core specification. The following 

code may be found in the file scene.cpp, method CSample::ListMaxValues: 
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GLfloat aliasedLin eWidthRange[2] = {0.0f, 0.0f};  

glGetFloatv(GL_ALIASED_LINE_WIDTH_RANGE, aliasedLineWidthRange); 

ShowText("GL_ALIASED_LINE_WIDTH_RANGE = %f, %f \ n",     

aliasedLineWidthRange[0], aliasedLineWidthRange[1]);  

GLfloat aliasedPointSizeRange[2] = {0.0f, 0.0f};  

glG etFloatv(GL_ALIASED_POINT_SIZE_RANGE, aliasedPointSizeRange); 

ShowText("GL_ALIASED_POINT_SIZE_RANGE = %f, %f \ n",     

aliasedPointSizeRange[0], aliasedPointSizeRange[1]);  

GLint maxCombinedTextureImageUnits = 0; 

glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UN ITS,     

&maxCombinedTextureImageUnits); 

ShowText("GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS = %d\ n",     

maxCombinedTextureImageUnits);  

GLint maxCubeMapTextureSize = 0;  

glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, & maxCubeMapTextureSize); 

ShowText("GL_MAX_CUBE_MAP_TEXTURE_SIZE = %d\ n",      

maxCubeMapTextureSize);  

GLint maxfragmentUniformVectors = 0; 

glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_VECTORS,     

&maxfragmentUniformVectors);  

ShowText("GL_MAX_FRAGMENT_UNIFORM_VECTORS = %d\ n",     

maxfragmentUniformVectors); GLint  

maxRenderbufferSize = 0; glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE, 

&maxRenderbufferSize); ShowText("GL_MAX_RENDERBUFFER_SIZE = %d \ n",     

maxRenderbufferSize);  

GLint maxTextureImageUnits = 0;  

glGetIntegerv (GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureImageUnits); 

ShowText("GL_MAX_TEXTURE_IMAGE_UNITS = %d \ n",      

maxTextureImageUnits);  

GLint maxTextureSize = 0;  

glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize); 

ShowText("GL_MAX_TEXTURE_SIZE = %d \ n",      

maxTextureSize);  

GLint maxVaryingVectors = 0;  

glGetIntegerv(GL_MAX_VARYING_VECTORS, &maxVaryingVectors); 

ShowText("GL_MAX_VARYING_VECTORS = %d\ n",      

maxVaryingVectors);  

GLint maxVertexAttribs = 0;  

glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs); 

ShowText("GL_MAX_VERTEX_ATTRIBS = %d \ n", maxVertexAttribs);  

GLint maxVertexTextureImageUnits = 0; 

glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS,     

&maxVertexTextureImageUnits); ShowText("GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS = 

%d\ n",      

maxVertexTextureImageUnits);  
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GLint maxVertexUniformVectors = 0; 

glGetIntegerv(GL_MAX_VERTEX_UNIFORM_VECTORS,      

&maxVertexUniformVectors); ShowText("GL_MAX_VERTEX_UNIFORM_VECTORS = %d \ n",     

maxVertexUniformVectors);  

GLint maxViewportDims[2] = {0, 0};  

glGetIntegerv(GL_MAX_VIEWPORT_DIMS, maxViewportDims); 

ShowText("GL_MAX_VIEWPORT_DIMS = %d, %d \ n",      

maxViewportDims[0], maxViewportDims[1]);  

 

For more detail about the glGet* methods, see: 

Â The OpenGL ES Specification at http://www.khronos.org/registry/gles/ 

specs/3.1/es_spec_3.1.pdf. 

Â The OpenGL ES Reference Page for glGet at https://www.khronos.org/opengles 

/sdk/docs/man3/html/glGet.xhtml. 

There is also more information about the following: 

Â Conversion rules 

Â Details of the states that are available to be queried 

Â States that are considered nonindexed and those that are considered indexed 

2.4 About the OpenGL ES implementation 

Table 2-3 lists the values of all the GL constant values as supported by Adreno in OpenGL ES 2.0 

contexts. 

Table 2-3  Adreno GL constant values for OpenGL ES 2.0 contexts 

GL constant name Adreno value 

GL_ALIASED_LINE_WIDTH_RANGE 1.0 to 8.0 

GL_ALIASED_POINT_SIZE_RANGE 1.0 to 1023.0 

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 32 

GL_MAX_CUBE_MAP_TEXTURE_SIZE 16384 

GL_MAX_FRAGMENT_UNIFORM_VECTORS 224 

GL_MAX_RENDERBUFFER_SIZE 16384 

GL_MAX_TEXTURE_IMAGE_UNITS 16 

GL_MAX_TEXTURE_SIZE 16384 

GL_MAX_VARYING_VECTORS 32 

GL_MAX_VERTEX_ATTRIBS 32 

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 16 

GL_MAX_VERTEX_UNIFORM_VECTORS 256 

GL_MAX_VIEWPORT_DIMS 16384 

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
https://www.khronos.org/opengles/sdk/docs/man3/html/glGet.xhtml
https://www.khronos.org/opengles/sdk/docs/man3/html/glGet.xhtml
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2.5 Debug and profile 

Debugging an OpenGL ES application is usually much more time-consuming than debugging a 

typical nongraphics application. Even if  OpenGL ES is asked to perform an invalid operation, it 

is rare that it results in a crash. The most common crash case is when asking to download 

client-side data from an incorrect memory location. There is no fatal exception either. 

The lack of a crash or fatal exception means that there is no good starting point for an 

investigation. Typically, information about the OpenGL ES state configuration must be gathered, 

but this is not easy to do, unless using a specialized tool like the Adreno Profiler. Otherwise, 

manually add glGet* calls to the code to find out how OpenGL ES is configured at a particular 

point. However, this can be a time-consuming activity. 

A problem relating to OpenGL ES usually manifests itself in one of two ways: 

Â Parts of the geometry may not render at at all, or may be drawn with visual glitches. Problems 

like these are usually caused by driver bugs, by a misunderstanding by the developer about 

the way context sharing or certain other OpenGL ES features work, by thread race conditions 

in the application, or because the application assumes that it can use more resources of a 

certain type, e.g., texture units, than is supported by the OpenGL ES implementation. 

Â The application works correctly on the development platform but malfunctions on other 

platforms. In addition to the causes listed above, a common cause for this problem is shader 

bugs. Typical errors include missing #extension declarations, omitted precision definitions, 

packed/shared member layout incompatibilities between platforms, or shaders attempting to 

use more active samplers or uniforms than is supported by the OpenGL ES implementation. 

There is usually no straightforward way of diagnosing the shader issues mentioned in the second 

point above. While some of the shader language problems could be determined by running 

vendor-specific offline compilers against the shaders, this is often an arduous and impractical 

task, given that many OpenGL ES applications generate shaders on-the-fly. Al so, these compilers 

rarely expose program linking functionality, which is one of the areas where many 

shader-specific incompatibility problems arise. As such, these issues can only be detected by 

manually testing an application on a number of different platforms. 

Fortunately, many of the problems listed in the first bullet point can be detected at development 

time. 

The following sections describe the three different techniques that developers can use to detect 

errors such as these, in the process of implementing the OpenGL ES application. They also cover 

some tools that can improve software performance. 
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2.5.1 Debug an OpenGL ES application 

2.5.1.1 Using glGetError 

The OpenGL ES API is a strict C API, meaning that any errors it detects are be reported via 

exceptions. The basic method for an OpenGL ES application to detect errors is the use of a 

glGetError call. This call can be issued in any thread to which a rendering context has been 

bound. 

There is a range of different error codes that can be returned if an invalid call is made. The 

normal rule is that if OpenGL ES detects an error, then the offending command does not cause 

any modification of the OpenGL ES state, nor does it rasterize any samples. The error code 

GL_OUT_OF_MEMORY is a notable exception here. This error is reported when a memory 

allocation request fails on the driver side. If an application detects this error, it should assume that 

the OpenGL ES state has become undefined. The safest step it could take would be to terminate 

the process. 

All error codes that OpenGL ES can report are: 

Â GL_INVALID_ENUM  ï One of the GLenum arguments passed to a function was invalid. A 

common cause for this is that the developer passes an enum value defined as part of an 

OpenGL ES extension, when that extension is not actually available. Another reason is that 

the value is simply incorrect. 

Â GL_INVALID_FRAMEBUFFER_OPERATION ï An API function that requires the draw 

and/or read frame buffers to be complete was called, but this was not the case. Note that this 

is not required by all API functions. This error code can also be reported if the OpenGL ES 

implementation does not support rendering to a particular frame buffer configuration, in 

which case the application should use a different set of internal formats for the frame buffer 

concerned. 

Â GL_INVALID_OPERATION ï The operation attempted to perform was invalid, given the 

current OpenGL ES state configuration. This error code is vague and the offending command 

must be narrowed down to find the cause of the error. For large applications especially, this 

may not be a trivial task. 

Â GL_INVALID_VALUE  ï A numeric argument passed to a function was invalid. This usually 

occurs for reasons similar to the ones described for GL_INVALID_ENUM . 

Â GL_OUT_OF_MEMORY ï The driver ran out of memory while trying to execute the 

command. The application should terminate as soon as possible, as the working environment 

can no longer be assumed to be stable. 

A generalized description of the error is given above, but a more specific interpretation is 

dependent upon the command causing the error. 

NOTE: glGetError does not tell the application which command has reported the error, and that errors can 

be reported by OpenGL ES commands called implicitly by the driver; e.g., when the driver has 

previously decided to defer a call such as a draw call, and is now issuing it internally in the course 

of processing another command. 
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Internally, when the driver detects an error in an API call, it raises a flag corresponding to one of 

the codes. If further errors are detected, they do not affect the recorded error state. When 

glGetError is called, the cached error code is returned and the flag is lowered so that subsequent 

glGetError calls return GL_NO_ERROR. 

Since the Adreno driver caches API calls in a command buffer, glGetError calls can be 

considered expensive, because they flush the pipeline and wait for the completion of all buffered 

commands. Unless performance is unimportant for the application, it is not recommended to 

insert glGetError calls after every API call made, at least not in release builds. A good 

compromise is to insert guard glGetError calls at strategic locations, for debug builds only. Using 

this approach, performance is unaffected in production builds, and in the case that a bug report 

arrives, it will not take long for a team to prepare a debug version that can be used to locate the 

rendering pipeline part causing the problem. 

Using GL_KHR_debug 

There are some significant limitations with the use of glGetError. 

Â The error codes do not convey precise information about the type of error. 

Â To fix a problem, the programmer must first work out which OpenGL ES API call has caused 

the error to be raised, and must then look at the bigger picture, e.g., OpenGL ES state, to 

understand why it is that the error code is being generated. This takes up development time 

that could instead have been spent on implementing new features. 

Â There is no way of getting the driver to make a callback to the application so that the 

programmer could insert a breakpoint to find out what went wrong and where. 

The Adreno driver supports a special extension called GL_KHR_debug, which aims to address 

these needs and includes a number of features to enhance the debugging experience for OpenGL 

ES developers. 

The following section focuses on the features that are most relevant to debugging OpenGL ES 

applications and will provide an overview of the API. For further details, see 

https://www.opengl.org/registry/specs/KHR/debug.txt. 

When the GL_KHR_debug extension is supported, applications can sign up for driver callbacks 

by calling glDebugMessageCallbackKHR. This function allows the registering of a callback 

function pointer and an optional user-specified argument. OpenGL ES uses that callback to 

provide feedback to the application in the form of human-readable, NULL-terminated strings. 

The feedback can contain detailed information about why an error code was generated, as well as 

information of the following types: 

Â Warnings about the use of deprecated functionality, or of something that is marked as 

undefined in the specification 

Â Implementation-dependent performance warnings 

Â Warnings about using extensions or shaders in a vendor-specific way 

Â User-injected messages 

Â Debug group stack notifications (covered below) 

Each feedback message is accompanied by a set of enums that provide information about the: 

Â Origin of the message (driver, shader compiler, window system, etc.) 

Â ID of the message 

https://www.opengl.org/registry/specs/KHR/debug.txt
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Â Type of the message (error report, performance warning, portability hint, etc.) 

Â Severity level of the message (high, medium, low, notification) 

The callbacks will only occur if GL_DEBUG_OUTPUT_STATE_KHR is enabled by calling 

glEnable. To disable the functionality again, call glDisable for the same state enum. 

The application can inject its own messages into the debug stream by calling 

glDebugMessageInsertKHR. This is especially useful for middleware which can use the 

mechanism to provide hints to the developer or notification of any error situations detected. 

All messages either generated by the driver or inserted into the command stream using 

glDebugMessageInsertKHR are written to the active debug group, which is the top of the debug 

group stack. A new debug group (identified by a user-specified message) can be pushed onto the 

stack by calling gl-PushDebugGroupKHR. Existing debug groups can be popped off the stack by 

calling glPopDebugGroupKHR. Whenever a debug group is pushed onto or popped off of the 

debug group stack, the message that has been associated with the group will be inserted into the 

stream. An example use case would be to use debug groups to mark the start and end of each 

rendering pass. 

The application can filter out unwanted messages by calling glDebugMessageControlKHR. Any 

of the properties of the message can be used as a filtering key. This is referred to as volume 

control. The volume control setting applies to the active debug group, and will be inherited if a 

new debug group is pushed onto the stack. 

If the application does not register a callback function but does enable GL_DEBUG_OUTPUT_ 

STATE_KHR, then the messages will be stored in a message log. The log can hold up to 

GL_MAX_DEBUG_LOGGED_MESSAGES messages. Once the storage fills up, any 

subsequently generated messages are discarded until such time as the application frees up some 

space by fetching one or more messages. The messages can be fetched by calling 

glGetDebugMessageLogKHR, which returns both the message string and the associated 

properties of each message. 

Another useful feature offered by the GL_KHR_debug extension is the ability to provide the 

callback information in two different modes: 

Â Asynchronous mode (active by default) ï The OpenGL ES implementation can call the debug 

callback routine concurrently from multiple threads, including threads that the context that 

generated the message is not currently bound to (examples include but are not limited to, 

threads to which other contexts are bound, or threads that are internally used by the driver). It 

can also issue the callback asynchronously after the OpenGL ES command that generated the 

message has already returned. While Asynchronous mode is active, it is the responsibility of 

the application to ensure thread safety. 

Â Synchronous mode ï The driver is not allowed to issue more than one callback at a time, per 

rendering context. The callback will be made before the OpenGL ES command that generated 

the debug message is allowed to return. Synchronous mode causes all calls to be implicitly 

flushing, so performance is greatly reduced. However, given the fact that the callback occurs 

at the time of the OpenGL ES API call, this mode greatly simplifies the debugging process 

for developers. 

Synchronous mode can be explicitly enabled by calling glEnable for 

GL_DEBUG_OUTPUT_SYNCHRONOUS_KHR mode. For the application to go back into 

Asynchronous debugging mode, glDisable can be called for the same enum. 
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The GL_KHR_debug extension also allows the developer to label OpenGL ES objects with 

NULL-terminated strings using the functions glObjectLabelKHR and glObjectPtrLabelKHR. The 

label can later be retrieved using glGetObjectLabelKHR or glGetObjectPtrLabelKHR. This could 

help easily identify OpenGL ES objects during the debugging process, without the need to 

traverse the applicationôs internal data model. 

Shader debugging 

Situations may arise where a rendering glitch is caused not by incorrect OpenGL ES API usage, 

but rather by a bug hidden somewhere in one of the shaders that make up the program used by the 

draw calls. Here are a few tips on how to approach such situations. 

Â Start by making sure that all the input attributes defined for the vertex shader are passed 

correct values. For instance, if the lighting is not working as expected, start by verifying that 

the normal data that is being used for the calculations is valid, e.g., check this by passing 

unmodified normal data to the fragment shader to verify by visual inspection that each vertex 

is assigned correct vector values. 

NOTE: Be careful when modifying shaders. E.g., if the developer commented out the existing 

implementation and replaced it with code to pass the normal vector to the fragment shader, 

then it could cause many of the existing input attributes and uniforms to become inactive. 

Depending on how the application and shaders are written, this could make the bug even 

more difficult to track down. Instead of removing the whole body, arrange for all other 

variables that might contribute to the result value to be multiplied by a very small value, e.g., 

1.0/256.0 for an internal format that uses 8 bits per component, so that they do not hide the 

result value that is being visually inspected. 

Â Do the same for all the uniforms used by the shader. Pay special attention to uniform block 

members. Make sure the shaders define the same uniform block layout that the application is 

assuming. 

Â Use transform feedback to transfer the data out of the rendering pipeline back to the process, 

if  it is suspected that some of the calculations may be executing incorrectly. Transform 

feedback allows for checking that the data is passed correctly through the whole rendering 

pipeline, except for the fragment shader stage. This becomes especially important when 

starting to use geometry and/or tessellation control/evaluation shaders. 

Â If the platform supports geometry shaders, use them to emit helper geometry, e.g., normal 

vectors. 

Â If some textures are not being sampled correctly, it is likely that they are considered 

incomplete. The easiest way to check this is by selecting GL_NEAREST minification 

filtering, and setting GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL to 

the index of a mipmap that has been uploaded. 

Â If textures are still inaccessible, ensure no sampler object is overriding the texture parameters 

of a texture unit to which that texture has been bound. Verify that the sampler uniforms are 

set to use the corresponding texture units. 

Â Use the Adreno Profiler tool to edit the shaders and investigate the results in real time. 
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2.5.2 Profile an OpenGL ES application 

If the application is underperforming, the first step is to identify the rendering pipeline parts that 

are taking too long. Unfortunately, given that OpenGL ES works asynchronously, it is not enough 

just to record the time before and after each rendering pass and then check the time difference. 

The values given would usually only show how long it took the driver to store the request in the 

command buffer. 

Here are a few approaches to measure the GPU time taken by a specific part of the rendering 

pipeline: 

Â Starting with OpenGL ES 2.0, if wanting to measure time taken for a given set of API calls, 

delimit that region with glFinish calls. Record the start time just after the first glFinish call, 

and the end time just after the second glFinish call. The time difference will tell how much 

time it took to execute that block. This method is less accurate than the one below because of 

the longer round trip that needs to be made before the execution flow is returned to the caller. 

It also causes more degradation to overall rendering performance because the first glFinish 

call must wait until all previously enqueued commands finish executing on the GPU. 

Â If using OpenGL ES 3.0, a more efficient way is to use sync objects as a lightweight 

alternative to the heavyweight glFinish calls. To do so, follow the same pattern used in the 

first solution, but replace each glFinish call with the following code: 

 

GLsync sync;  

sync = glFenc eSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); 

glClientWaitSync(sync);  

 

NOTE: Do not forget to release the sync objects using glDeleteSync when finished with the 

measurements. 

Â It is possible to use the Scrubber and Grapher modes of the Adreno Profiler to collect more 

detailed information about rendering performance. For more detail on the topic, see 

Section 8.1. 
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3 Using OpenGL ES 3.0 with Adreno 

3.1 New features in OpenGL ES 3.0 

The arrival of OpenGL ES 3.0 in August 2012 substantially expanded the OpenGL ES feature set 

available to embedded application developers. Up to that time, many of the more complex 

features had only been available to desktop developers using OpenGL 3.x. 

To take a few examples: 

Â Sampler objects and vertex attribute array divisors became a core feature in desktop OpenGL 

3.3 

Â Seamless cube map filtering and fence sync objects became core in desktop OpenGL 3.2 

Â Instanced draw calls and uniform buffer objects were introduced in desktop OpenGL 3.1 

Â Frame buffer objects (with multiple render target support) and transform feedback were 

introduced in desktop OpenGL 3.0 

All of the above are included in core OpenGL ES 3.0. It is true that partial support for some of 

these features was available in OpenGL ES 2.0 via the extensions mechanism. But their 

availability could not have been assumed across the whole OpenGL ES 2.0 ecosystem. If a 

developer wanted to use a feature that was not part of the ES2.0 core specification, they would 

have needed to implement a fall-back code-path to cater for devices not supporting the extension. 

This greatly increased the complexity of the implementation and the amount of testing needed. As 

a result, developers were usually discouraged from experimenting with the new features. 

This section presents a conceptual view of many features introduced in OpenGL ES 3.0. 

Section 3.2 covers a subset of these features at the API level. 

For further information about all of the features, see the OpenGL ES 3.0 specification at 

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf. 

3.1.1 Two-dimensional array textures 

Two-dimensional array textures (2D array textures) builds upon the concept of the 

two-dimensional texture (2D texture). 

In a 2D texture, a mipmap level consists of a single image. In a 2D array texture, a single mipmap 

level holds a number of images. Each image held within a single mipmap is called a layer. All 

layers at a given mipmap level have the same resolution. 

Layer data is in the internal format requested for the 2D array texture object at the time it was 

created. The width and height of all the layers at a given mipmap level is also defined at creation 

time and cannot be changed during the lifetime of the texture object. The number of layers a 

two-dimensional array texture object holds for each mipmap level is known as the texture object 

depth. This also needs to be defined at creation time. 

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
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Figure 3-1  2D array texture 

A mipmap chain can be allocated for a 2D array texture. As a minimum, it is possible to define 

just one base mipmap level for each layer, and texture sampling will still work. This can be done 

if mipmap-based texture filtering is not necessary, or if available memory is low. 

All layers at the mipmap level n+1 must be half the size of the layers at mipmap level n, e.g., if 

using a layer size of 4x8 at mipmap level 0, each layer at mipmap level 1 would need to have a 

size of 2x4. Mipmap level 2 would be 1x2, and for the last mipmap level each layer would take a 

single pixel. Each dimension is clamped at 1. 

Once mipmap storage is defined as either mutable or immutable, 2D array textures can be: 

Â Used as render targets; layers can be rendered using frame buffer objects 

Â Sampled from any shader stage using new GLSL texture sampling functions 

Nearly all texture sampling functions available for 2D textures in ES Shading Language 3.0 can 

be used to sample 2D array textures. The only functions that do not support this are projective 

texture lookups and their derivatives. Should the requested location exceed the defined range in 

any axis, the behavior of the sampling functions is controlled by S/T/R wrap modes. 

Texture sampling functions that operate on two-dimensional array texture targets take an 

additional parameter, which defines the layer index, from which the data should be sampled. 
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Important 

Values returned by 2D array texture sampling functions always operate within the layer 

boundaries being sampled from. It is only the set of mipmaps defined for sampled layer that is 

used for calculating the result value. Hence, it is guaranteed that none of the taps used during the 

sampling process will take data from more than one layer. This is a fundamental concept of 2D 

array textures that distinguishes them from 3D textures. 

2D array textures are often used to enhance existing texture atlas techniques. They are also useful 

for multitexturing or video frame storage purposes. Using 2D array textures, is it possible to 

reduce the number of texture bindings that are configured for each draw call, because shaders can 

be written that access multiple layers of a single 2D array texture via a single texture sampler. 

3.1.2 Three-dimensional textures 

From a conceptual point of view, three-dimensional textures (3D textures) are very similar to 2D 

array textures. The key differences between the two lie in how the data sampling process is 

performed and how the mipmap chain is built. 

3D textures consist of a set of two-dimensional images called slices. All slices combined together 

form a single mipmap level. Subsequent mipmap levels must be half the size of preceding 

mipmap levels. A mipmap chain for a 3D texture object consists of a set of cuboids, where each 

subsequent cuboid is, in general, half the size of the one that precedes it. 

 

Figure 3-2  3D array texture 

NOTE: This is different from 2D array textures, where each layer must have a separate mipmap chain 

allocated. 

For each slice, the base mipmap level must be defined. Beyond this, declaration of subsequent 

mipmaps is optional, if nearest or linear minification filtering is used. Using mipmap-based 

minification filtering for a 3D texture object, for which the mipmap chain has not been defined, 

will render the texture incomplete, causing any sampling operations to return vec4(0, 0, 0, 1). 



QualcommÈ AdrenoÊ OpenGL ES Developer Guide Using OpenGL ES 3.0 with Adreno 

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47 

 

For 3D textures, it is assumed that all slices are uniformly distributed across a unit cube which 

starts at (0, 0, 0) and ends at (1, 1, 1), e.g., if a 3D texture object was defined with a depth of 4: 

Â Slice at index 0 would be at Z = 0 

Â Slice at index 1 would be at Z = 0.33 

Â Slice at index 2 would be at Z = 0.67 

Â Slice at index 3 would be at Z = 1 

All 3D texture sampling functions in GLSL require the caller to provide a 3D location within the 

unit cube that the data should be sampled from. The result value is calculated from the slice data 

using a number of linear interpolation operations. 

NOTE: This is a key difference between 2D array textures and 3D textures. When sampling from a 2D 

array texture, OpenGL ES never uses data outside the sampled layer. 

The data returned by the 3D texture sampling functions when trying to sample locations defined 

outside the cube depends on the wrap mode configuration. 

A common use case for 3D textures is the storage of volumetric data, since the functionality 

provides a hardware-accelerated means of calculating an interpolated value anywhere within the 

defined dataset. 

3.1.3 Immutable textures 

The only type of texture objects recognized by the core specification of OpenGL ES 2.0 were 

mutable texture objects. This meant that an OpenGL ES application was allowed, at any time 

during its execution, to completely redefine the texture mipmap configuration. Not only could it 

add or remove mipmaps on-the-fly, but it was also allowed to change the internal format or 

properties such as the width or height of any mipmap of any texture object. This freedom greatly 

reduced the optimization possibilities for driver implementations, which were forced to keep 

track of the completeness of all textures used by the application. Texture completeness 

verification is a significant overhead, especially if it has to be executed for every draw call the 

application makes. 

The solution for OpenGL ES is in immutable texture objects. Initially introduced in the 

GL_EXT_texture_storage extension, they became a core feature of OpenGL ES 3.0. Immutable 

textures work just like mutable textures, except that it is no longer possible to apply any of the 

following API functions to texture objects that have been made immutable: 

Â glCompressedTexImage*  

Â glCopyTexImage*  

Â glTexImage*  

Â glTexStorage* ï Can be used to initialize an immutable texture object 

The new glTexStorage* entry-points make a texture immutable. They initialize a mipmap chain 

for a user-specified texture target, but do not fill the mipmaps with any contents. It is the 

responsibility of the application to fill the immutable texture object with actual contents by using 

glTexSubImage* entry-points. 

Immutable textures do not have a specific use case. Instead, they should be considered a means of 

reducing the load on the driver, which often translates to a better rendering performance. 
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NOTE: On Adreno platforms, the use of immutable textures has a major performance advantage. Always 

use immutable textures and avoid all mutable textures. 

3.1.4 Per-texture object LoD clamp 

The OpenGL ES 3.0 API specification includes a technique for organizing textures at multiple 

resolutions that enables the display of low-resolution textures and slowly bringing in more 

detailed textures over multiple frames as the camera (position of the viewer) in the scene 

approaches the textured object. This kind of technique is typically used in mapping or navigation 

applications. When zooming in to the map, the larger resolution texture must be loaded, but 

streaming that texture takes time. Lower resolution textures are displayed in the meantime. This 

provides a better and more immediate viewing experience and also helps manage memory 

bandwidth more efficiently without compromising performance. 

As an example, consider a texture that is 1024x1024 texels in size with 32 bits per texel. The Mip 

at LoD = 0 for this texture is 4MB and Mips 4-10 are about 5KB in size as seen in Figure 3-3. As 

a starting point for the LoD effect, download Mips for levels 4-10 by setting the base level to 4 

and minimum LoD to 4. Once the application starts, download the Mip 3,2,1,0. Then by setting 

the base level to 0, slowly, over multiple frames, change min LoD to 0. Thus, the texture 

gradually phases to the highest resolution. 

 

Figure 3-3  Texture LoD 

Use the following parameters in glTexParameter() function to control different LoDs. 

Â GL_TEXTURE_BASE_LEVEL ï Specifies the index of the lowest defined mipmap level; 

this is a non negative integer value, where the initial value is 0 

Â GL_TEXTURE_MAX_LEVEL ï Sets the index of the highest defined mipmap level; this is 

a non negative integer value, where the initial value is 1000 

Â GL_TEXTURE_MAX_LOD ï Sets the maximum level-of-detail parameter; this 

floating-point value limits the selection of the lowest resolution mipmap (highest mipmap 

level), where the initial value is 1000 

Â GL_TEXTURE_MIN_LOD ï Sets the minimum level-of-detail parameter; this floating-point 

value limits the selection of highest resolution mipmap (lowest mipmap level), where the 

initial value is -1000. 
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3.1.5 PCF for depth textures 

Shadow mapping creates shadows in high-end rendering for motion pictures and television. 

However, it has been problematic to use shadow mapping in real time applications like video 

games due to aliasing problems in the form of magnified jaggies. Shadow mapping involves 

projecting a shadow map on geometry and comparing the shadow map values with the light-view 

depth at each pixel. If the projection magnifies the shadow map, aliasing in the form of large, 

unsightly jaggies will appear at shadow borders. Aliasing can usually be reduced by using higher 

resolution shadow maps and increasing the shadow map resolution with techniques, e.g., 

perspective shadow maps. 

Using perspective shadow-mapping techniques and increasing shadow map resolution does not 

work when the light is traveling nearly parallel to the shadowed surface because the 

magnification approaches infinity. High-end rendering software solves the aliasing problem by 

using a technique called percentage-closer filtering. 

Unlike normal textures, shadow map textures cannot be prefiltered to remove aliasing. Instead, 

multiple shadow map comparisons are made per pixel and averaged together. 

This technique is called percentage-closer filtering (PCF) because it calculates the percentage of 

surface that is closer to the light and, therefore, not in shadow. Consider the example PCF 

algorithm as described in Reeves et al. 1987, which called for mapping the region to be shaded 

into shadow map space and sampling that region stochastically; i.e., randomly. The algorithm was 

first implemented using the REYES rendering engine, so the region to be shaded meant a 

four-sided micropolygon. 

Figure 3-4 is an example of that implementation. 

 

Figure 3-4  Percentage-closer filtering algorithm 



QualcommÈ AdrenoÊ OpenGL ES Developer Guide Using OpenGL ES 3.0 with Adreno 

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50 

 

Adreno 4xx has hardware support for the OpenGL ES 3.0 feature of percentage closer filtering 

where a hardware bilinear sample is fetched into the shadow map texture, thereby alleviating the 

aliasing problem with shadow mapping, as shown in Figure 3-5. 

 

Figure 3-5  Percentage-closer filtering from the Adreno SDK 

To understand how to use this feature, refer to the OpenGL ES 3.0 PCF sample from the Adreno 

SDK. 

3.1.6 New internal texture formats 

OpenGL ES 3.0 introduces sized internal formats that can be used to define texture data contents. 

Texture contents can now be expressed using floating-point, signed and unsigned integer internal 

formats, as well as in a number of different size-optimized formats. Two new internal formats can 

be used to store color information expressed in the sRGB color space. 

Table 3-1  Internal texture formats supported in ES 3.0 

Type Internal formats 

Depth Á GL_DEPTH_COMPONENT16 

Á GL_DEPTH_COMPONENT24 

Á GL_DEPTH_COMPONENT32F 

Depth+Stencil Á GL_DEPTH24_STENCIL8 

Á GL_DEPTH32F_STENCIL8 
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Type Internal formats 

Floating-point Á GL_R11F_G11F_B10F 

Á GL_R16F 

Á GL_R32F 

Á GL_RG16F 

Á GL_RG32F 

Á GL_RGB16F 

Á GL_RGB32F 

Á GL_RGB9_E5 

Á GL_RGBA16F 

Á GL_RGBA32F 

Signed integer Á GL_R16I 

Á GL_R32I 

Á GL_R8I 

Á GL_RG16I 

Á GL_RG32I 

Á GL_RG8I 

Á GL_RGB16I 

Á GL_RGB32I 

Á GL_RGB8I 

Á GL_RGBA16I 

Á GL_RGBA32I 

Á GL_RGBA8I 

Signed normalized Á GL_R8_SNORM 

Á GL_RG8_SNORM 

Á GL_RGB8_SNORM 

Á GL_RGBA8_SNORM 

sRGB Á GL_SRGB8 

Á GL_SRGB8_ALPHA8 

Unsigned integer Á GL_R16UI 

Á GL_R32UI 

Á GL_R8UI 

Á GL_RG16UI 

Á GL_RG32UI 

Á GL_RG8UI 

Á GL_RGB10_A2UI 

Á GL_RGB16UI 

Á GL_RGB32UI 

Á GL_RGB8UI 

Á GL_RGBA16UI 

Á GL_RGBA32UI 

Á GL_RGBA8UI 

Unsigned normalized Á GL_R8 

Á GL_RG8 

Á GL_RGB5_A1 

Á GL_RGB565 

Á GL_RGB10_A2 

Á GL_RGB8 

Á GL_RGBA4 

Á GL_RGBA8 
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For sized internal formats, it is guaranteed that the actual resolution of the internal texture data 

storage matches the size defined by the format. 

Tip 

For backward compatibility, unsized internal formats continue to be supported. However, using 

them may cause undesirable interactions between different OpenGL ES extensions and other 

corner cases. Using the new sized internal formats instead is recommended. 

3.1.7 Transform feedback 

It is becoming more popular to perform computations on the GPU and reuse the result data in 

subsequent draw calls. 

Unfortunately, in the core version of OpenGL ES 2.0, there was only one feasible way of using 

the GPU for general-purpose computing. All calculations had to be done in the fragment shader 

stage, storing the results in a color attachment of the currently bound draw frame buffer. There 

were many limitations to this approach, including: 

Â Core ES 2.0 only supported rendering to renderbuffers and textures using GL_RGBA4, 

GL_RGBA5_A1 and GL_RGB565 internal formats, which were very limited in terms of 

supported precision. 

Â Core ES 2.0 did not support color-renderable floating-point internal format. 

Â Core ES 2.0 only supported one color attachment per frame buffer. 

OpenGL ES 3.0 introduces support for transform feedback, which allows the capturing of output 

variable values, leaving the vertex shader stage. Once captured, the values can be transferred to 

one or more buffer object regions in two different ways: 

Â A single buffer object region can be used to store values of the varyings in the order specified 

by the application. 

Â Multiple buffer object regions can be used. In this case, each varying is assigned to a different 

buffer object region. The multiple buffer object regions may be part of the same buffer object, 

but this is not necessarily the case. 

Using a single buffer object region, the maximum number of components that can be captured 

from a single vertex shader is guaranteed to be at least 64. Using multiple buffer object regions, 

the maximum number of components that can be captured from a single vertex shader is 

guaranteed to be at least 16. 

Given the range of new vertex data types supported in ES 3.0, transform feedback offers 

possibilities comparable to compute shaders, which is a feature not available in OpenGL ES until 

OpenGL ES 3.1. 

Example use cases include: 

Â Debugging ï Investigate the data that the vertex shader operates on or check the values that 

are passed to the fragment shader stage 

Â GPU ï Accelerated data processing 

Â Physics ï Boids and particle systems 
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3.1.8 Instanced draw calls 

The OpenGL ES 2.0 API supports two types of draw calls: 

Â Using vertex array data with glDrawArrays 

Â Using index data with glDrawElements 

OpenGL ES 3.0 introduces a new type of draw calls called instanced draw calls. The names of the 

new API entry points are formed by suffixing the above function names with Instanced: 

Â glDrawArraysInstanced 

Â glDrawElementsInstanced 

The key feature of the instanced draw call is that it executes repeated draw operations with a 

user-specified repeat count. Each repeat of the draw operation is called an instance. The vertex 

shader can use the new ES Shading Language constant gl_VertexID. This constant holds the 

index value of the draw call instance for this shader invocation. 

With the new entry points, a supporting feature called vertex attribute divisor was introduced. For 

attributes backed by enabled vertex attribute arrays, the divisor allows specification of a rate at 

which the values exposed in the vertex shader via attributes should advance: 

Â If the rate is set to 0, the affected attribute advances once per vertex. 

Â Otherwise, the rate defines the number of instances that need to be drawn before the attribute 

advances. 

Vertex attribute divisors are useful for specifying vector properties that take different values per 

instance (or number of instances), e.g., color, material ID, and model matrices. 

A question that is often brought up in the context of instanced draw calls is: ñWhy? What do 

instanced draw calls provide, compared to a series of draw calls executed one after another?ò The 

answer is two-fold: 

Â With instanced draw calls, the driver needs to perform state validation only once per call, not 

once per instance. Using a sequence of noninstanced draw calls, the driver would have to 

perform the validation many times, once for each call. This includes vertex array object 

validation, also frame buffer and texture completeness checks. These tasks all take a certain 

amount of time to execute and the cumulative effect can be significant. 

Â Any memory transfer operations need to be performed only for the first instance, the same 

memory being reused for subsequent instances. 

For best performance it is crucial to find the optimal balance between the complexity of the 

geometry drawn by each instance and the number of instances used. It might be faster to use a 

smaller number of instances, each instance drawing a larger number of primitives. Always profile 

application rendering performance to ensure the maximum performance is given from the 

hardware. 
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Figure 3-6 shows a use case for this feature. The birds were drawn with a single instanced draw 

call instead of dozens of separate noninstanced draw calls, resulting in significantly improved 

performance: 

 

Figure 3-6  Single instanced draw call 

3.1.9 Query objects 

For optimal performance of any 3D application, ensure that the rendering pipeline operates 

asynchronously as far as possible. For an explanation, read the topic OpenGL as a Graphics 

Pipeline. 

OpenGL ES 3.0 provides a new feature called query objects which allows a query of a number of 

different properties relating to the rendering process, in an asynchronous manner. These queries 

do not stall the rendering pipeline, unless explicitly requested to do so. This means that the 

application is able to keep the CPU busy with other tasks until the GPU is able to deliver the 

required information. 

OpenGL ES 3.0 allows applications to query the following rendering pipeline properties with 

query objects: 

Â Have any of the subsequent draw calls generated fragments that passed the depth test? 

Â How many vertices were written into the bound transform feedback buffer(s) as a result of 

executing the subsequent draw calls? 

A notable example of a use case for query objects is occlusion queries. This technique aims at 

improving rendering performance by dividing the process of drawing a complex mesh into two 

steps: 

1. A simplified representation of the mesh is drawn. E.g., instead of drawing a teapot, a 

bounding box that encapsulates the object is drawn. Configure a query object to maintain a 

counter keeping track of fragments passing the depth test. 

2. The application checks if the counter is set at a nonzero value. If so, it means the teapot is 

visible and it must be drawn. If not, there must be a different object located in front of it, 

which fully covers the teapot. In this case, it would make no sense to issue the expensive 

draw call. 

Combined with other culling techniques, occlusion queries can significantly reduce frame 

rendering times. But if used wrongly they can have a serious negative impact on rendering 

performance. It is therefore a good idea to profile the rendering pipeline from time to time with 

occlusion queries first enabled and then disabled, to make sure they are actually helping 

performance. 
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The following recommendations can help make effective use of occlusion queries: 

Â Be careful if trying to use occlusion queries with a single-pass algorithm. It is easy to stall the 

driver while it waits for the query result to become available. The Adreno driver batches as 

many rendering commands as possible before dispatching them to the hardware. At a time 

when all draw calls for the rendering pass have been issued by the application and a 

glGetQueryObject* call has been made to retrieve the query result, it is possible that the 

query command is still held in a driver queue and has not yet been sent to the GPU. The 

safest way to use occlusion queries in single-pass algorithms is by using query data from the 

previous frame. 

Â It is easier to make performance gains using occlusion queries with multipass algorithms, as 

long as the query data is not requested in the same pass from which it was issued. 

3.1.10 New vertex data types 

OpenGL ES 3.0 introduces new types that describe vertex attribute data. These are: 

Â GL_HALF_FLOAT ï 16-bit half floating-point values 

Â GL_INT ï 32-bit signed integer values 

Â GL_INT_2_10_10_10_REV ï Special packed format that allocates 10 bits for X, Y and Z 

components, and 2 bits for the W component; bits are interpreted as representing signed 

integer values 

Â GL_UNSIGNED_INT ï 32-bit unsigned integer values 

Â GL_UNSIGNED_INT_2_10_10_10_REV ï Same as GL_INT_2_10_10_10_REV, except 

that the bits are interpreted as representing unsigned integer values 

3.1.11 Vertex array objects 

Modification of OpenGL ES state is a serious issue for anything more than the most trivial 

application. State modification operations are a fundamental and essential part of the API, but the 

cost of these operations cannot be ignored by any application that needs a high level of 

performance. 

One approach is to group multiple state items into a single compound state object. Complex state 

changes can then be carried out quickly by switching between two of these compound state 

objects. 

OpenGL ES 3.0 follows this method. Every OpenGL ES 3.0 application may be expected to set 

up vertex attribute arrays for its draw calls. The more input attributes a vertex shader takes, the 

larger the number of vertex attribute arrays that need to be configured. This directly translates to 

the number of API calls that need to be made before issuing a draw call. 

Vertex array objects were introduced in OpenGL ES 3.0. They encapsulate several state items 

including the vertex attribute array configuration. If making any of the following calls while a 

vertex array object is bound, then the state held by the vertex array object is updated rather than 

the context-wide state: 

Â glDisableVertexAttribArray 

Â glEnableVertexAttribArray 

Â glVertexAttribDivisor 
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Â glVertexAttribIPointer 

Â glVertexAttribPointer 

Any draw calls made while a vertex array object is bound to the rendering context uses the 

properties of the object instead of the context-wide ones. 

NOTE: Vertex array objects also capture the GL_ELEMENT_ARRAY_BUFFER buffer object binding. 

Once a pool of vertex array objects is configured (this can be done during a loading screen) it is 

no longer needed to reconfigure the vertex attribute arrays every time a draw call is made. 

Instead, switch to a different vertex array object using a single API call. This approach can 

improve rendering performance. 

3.1.12 Uniform buffer objects 

As seen in the discussion of vertex array objects, the OpenGL ES standard is evolving toward 

presenting an API focused on using as few state changes as possible.Uniform buffer objects are 

another example of this. As with vertex array objects, one of the goals of uniform buffer objects 

is to reduce the number of API calls that need to be issued before every draw call. 

One common bottleneck in complex rendering pipelines is the need for frequent uniform updates. 

The values assigned to uniforms exist as part of the state of a program object. This means that 

when making the program object active, the uniform values do not need to be reloaded. However, 

uniforms are often used to represent properties that change frequently, e.g., model matrices, light 

or material settings. This means that even if sorting the draw calls, the many calls to the 

glUniform* entry points cannot be avoided. 

The OpenGL ES 3.0 Shading Language introduces the concept of uniform blocks. This is a 

language construct that groups together an arbitrary set of variables and structures, and arrays of 

these. 

NOTE: Opaque object types, such as samplers, are not supported. 

Uniform blocks are defined separately for vertex and fragment shader stages, and any of the fields 

defined within a uniform block can be freely read from within the shader. 

In OpenGL ES 2.0, uniforms were always defined at a global scope. In OpenGL ES 3.0, it is still 

possible to define uniforms at a global scope, in which case they are considered to be a part of the 

default uniform block, which has an ID of 0. The default uniform block is provided for backward 

compatibility and cannot be used with the new API methods introduced to support uniform buffer 

objects. 

An important aspect of uniform blocks (other than the default uniform block) is that they no 

longer exist as part of a program object state. Instead, the contents of the uniform block are 

defined by a user-specified region of a valid buffer object. This means that the cumbersome 

glUniform* API does not need to be used to configure the contents of every single uniform within 

the program object. The approach now is to fill a region of a buffer object with values for the 

uniforms and then associate that region with the uniform block. 
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If wanting to update any of the uniforms, all there is to do is to make an update to the appropriate 

part of the buffer object region that has been mapped to the uniform block. This can be done 

using a call to the glBufferSubData function, or by mapping the buffer object region into process 

space and making the update there. 

This functionality comes with a few limitations. The maximum uniform block size for all 

conformant OpenGL ES 3.0 implementations must be at least 16,384 bytes. However, use of up 

to 12 uniform blocks simultaneously at each shader stage is allowed. This significantly boosts the 

amount of uniform data the shaders are able to access. After all, the total of 196,608 bytes per 

stage is much more than was possible with a single default uniform block for OpenGL ES 2.0. 

For example, if rendering a set of barrels and each barrel was made of a different material, the 

uniform block could store an array of material properties. Using uniform buffer objects, 

combined with instanced draw calls, a whole set of barrels can be rendered with just a single draw 

call. 

Under the Adreno architecture, the performance of the uniform buffer object can be further 

improved by following these recommendations: 

Â Consider reorganizing the uniform buffer members if some parts of the uniform buffer are 

frequently updated, so as to break those parts out into a separate uniform buffer 

Â Avoid using sparse uniform buffers; by doing so, it will not only help improve memory 

usage, but could also reduce the data transfer amount needed when updating regions of the 

uniform buffer storage 

3.1.13 Buffer subrange mapping 

Buffer objects have been a part of the core OpenGL ES standard since the release of ES 1.1. 

However, their role used to be quite limited. Their only purpose was to back up vertex attribute 

arrays, so that the vertex data would be taken from VRAM instead of from client-side buffers, so 

as to avoid the overhead of copying vertex data on every draw call. 

With the introduction of transform feedback in OpenGL ES 3.0 (see Section 3.1.7), data 

computed by the vertex shader now directly updates the buffer object storage. It now becomes 

crucial to have a means of mapping the generated data back into process space for investigation. 

OpenGL ES 3.0 introduces a new API to fulfill that need. An application is now able to map a 

valid region of any buffer object into process space to access the existing contents or to update 

the memory. 

Buffer subrange mapping and transform feedback together form a basis for GPGPU applications. 

As of version 3.0, OpenGL ES becomes a viable platform for this class of application. 

3.1.14 Multiple render target support 

OpenGL ES 2.0 provided support for rendering to up to three render targets at the same time. In 

the core version of ES 2.0, applications were not able to render to more than one color 

attachment, one depth attachment, and one stencil attachment. 

Many modern rendering techniques rely on the ability  of the fragment shader to store data into 

multiple render targets during the execution of a single draw call. The lack of support for multiple 

render targets in OpenGL ES 2.0 proved to be a major limitation for these techniques. The usual 

workaround was to decouple the drawing process into separate iterations. Each iteration would 

store a different type of information into the one available color attachment.  
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For instance, the first iteration could render normal data, the second could render world-space 

position data, and the last iteration could output albedo data. However, the cost associated with 

this approach meant that is was rarely viable. 

The problem has been addressed in OpenGL ES 3.0 by a set of frame buffer enhancements. Using 

OpenGL ES 3.0, it is guaranteed to be able to draw simultaneously to at least four color 

attachments. Each of the available color attachments, depth attachment, or stencil attachment can 

now be bound to any one of the following targets: 

Â Renderbuffer 

Â Selected mipmap level of a 2D texture 

Â Selected mipmap level of a cube-map texture face 

Â Selected mipmap level of a 2D array texture layer 

Â Selected mipmap level of a 3D texture slice 

3.1.15 Other new features 

These OpenGL ES 3.0 features are only a small fraction of the changes introduced in this version. 

Other new features introduced include: 

Â 10/10/10/2 signed and unsigned normalized vertex attributes 

Â 10/10/10/2 unsigned normalized and unnormalized integer textures 

Â 11/11/11/10 floating-point rgb textures 

Â 16-bit (with filtering) and 32-bit (without filtering) floating-point textures 

Â 16-bit floating-point vertex attributes 

Â 24-bit depth renderbuffers and textures 

Â 24/8 depth/stencil renderbuffers and textures 

Â 32-bit depth and 32f/8 depth/stencil renderbuffers and textures 

Â 32-bit, 16-bit and 8-bit signed and unsigned integer renderbuffers, textures and vertex 

attributes 

Â 8-bit srgb textures and frame buffers (without mixed RGB/SRBG rendering) 

Â 8-bit unsigned normalized renderbuffers 

Â 8-bit-per-component signed normalized textures 

Â Ability to attach any mipmap level to a frame buffer object 

Â Additional pixel store state 

Â At least 32 texture units, at least 16 each for fragment and vertex shaders 

Â Buffer object to buffer object copy operations 

Â Depth textures and shadow comparison 

Â Draw command allowing specification of range of accessed elements 

Â ETC2/EAC texture compression formats 

Â Frame buffer invalidation hints 
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Â Indexed extension string queries 

Â Mandatory online compiler 

Â Minimum/maximum blend equations 

Â Multi -sample renderbuffers 

Â Non-power-of-two textures with full wrap mode support and mipmapping 

Â Non-square and transposable uniform matrices 

Â Opengl shading language ES 3.00 

Â Pixel buffer objects 

Â Primitive restart with fixed index 

Â Program binaries, including querying binaries from linked GLSL programs 

Â R and RG textures 

Â Seamless cube maps 

Â Shared exponent RGB 9/9/9/5 textures 

Â Sized internal texture formats with minimum precision guarantees 

Â Stretch blits (with restrictions) 

Â Sync objects and fence sync objects 

Â Texture LoD clamp and mipmap level base offset and max clamp 

Â Texture swizzles 

Â Unsigned integer element indices with at least 24 usable bits 

More details on these features can be found in the the following documents: 

Â The OpenGL ES 3.0 Specification  ï http://www.khronos.org/registry/gles/specs 

/3.0/es_spec_3.0.3.pdf 

Â The OpenGL ES 3.0 Shading Language Specification ï 

http://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.4.pdf 

3.2 Using key features 

The following sections describe how to use the API for some of these new features. 

3.2.1 Using 2D array textures 

OpenGL ES 3.0 introduces a new texture target called GL_TEXTURE_2D_ARRAY. Once a 

generated texture object has been bound to that target using glBindTexture, it becomes a 2D array 

texture. Any attempt to bind that texture object to any other texture target results in a GL error. 

This remains the case until such time as the texture object is deleted. 

Although working with 2D array textures, there are a number of functions with the name suffix 

3D. This might seem confusing, but these functions can operate on either of the two texture object 

types: 

Â 2D array texture ï Specify target parameter as GL_TEXTURE_2D_ARRAY 

Â 3D texture ï Specify target parameter as GL_TEXTURE_3D 

http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
http://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.4.pdf
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2D array textures can be initialized as mutable or immutable texture objects (see Section 3.1.3, or, 

for a more detailed description of the differences between the two types, refer to the OpenGL ES 

3.0 Specification at https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf.) 

First, look at how to set up a mutable 2D array texture. Each mipmap level defines a set of layers, 

and can be initialized as follows: 

Â Use glTexImage3D to set up the mipmap using a noncompressed internal format 

Â Use glCompressedTexImage3D() to set up the mipmap using a compressed internal format 

Each mipmap level must be configured separately. Remember to satisfy the usual texture 

completeness rules when configuring the mipmap chain. 

To set up an immutable 2D array texture, use glTexStorage3D instead. This entry point sets up a 

complete mipmap chain for the texture object in a single call and supports both compressed and 

uncompressed internal formats. 

Now, look at how to replace the contents of a 2D array texture. 

To replace one complete layer at a specific mipmap level, or just a region within the layer, use 

glTexSubImage3D. This works for both immutable and mutable textures. 

To replace all layers at a specific mipmap level, use glTexImage3D. This works for mutable 

textures only and can break the texture completeness property of the object. 

Use glFramebufferTextureLayer to attach a single layer from a specified mipmap level of a 2D 

array texture to a frame buffer. Frame buffer completeness rules apply, see the OpenGL ES 3.0 

Specification at https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf. 

To copy a region of a currently bound read buffer to a specific layer at a given mipmap level of a 

2D array texture, use glCopyTexSubImage3D. 

Retrieve the ID of the texture object bound to the GL_TEXTURE_2D_ARRAY texture target of 

the current texture unit by issuing a glGet* query with a pname parameter value of 

GL_TEXTURE_BINDING_2D_ARRAY. 

2D array textures hold exactly the same texture parameter state as other texture types in OpenGL 

ES. All glGetTexParameter* and glTexParameter* functions can be used with the new 

GL_TEXTURE_2D_ARRAY texture target. 

In the ES Shading Language, a new set of sampler types has been introduced: 

Â isampler2DArray ï For signed integer data types) 

Â sampler2DArray ï For noninteger data types 

Â usampler2DArray ï For unsigned integer data types 

The following ES Shading Language texture sampling functions can be used with these new 

types: 

Â texelFetch 

Â texelFetchOffset 

Â texture 

Â textureGrad 

Â textureGradOffset 

Â textureLod 

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
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Â textureLodOffset 

Â textureOffset 

3.2.2 Using multiple render targets 

OpenGL ES 3.0 introduces support for rendering to multiple color attachments simultaneously 

from a single fragment shader invocation. It is guaranteed to be able to render to at least four 

render targets at the same time. 

Use the following functions to add and remove frame buffer attachments: 

Â glFramebufferRenderbuffer 

Â glFramebufferTexture2D 

Â glFramebufferTextureLayer 

For detailed API descriptions for these functions, see OpenGL ES 3.0 Reference Pages at 

https://www.khronos.org/opengles/sdk/docs/man3/. 

The following color attachments points and more are available in OpenGL ES 3.0: 

Â GL_COLOR_ATTACHMENT0 to render to color attachment zero 

Â GL_COLOR_ATTACHMENT1 to render to color attachment one 

Â GL_COLOR_ATTACHMENT2 to render to color attachment two 

The maximum number of color attachment points for use is given by the value of 

GL_MAX_COLOR_ATTACHMENTS. 

By default, fragment shader output is directed to a single render target only. If the default frame 

buffer is bound as draw frame buffer, then output is to the back buffer. If a user-supplied frame 

buffer is bound as draw frame buffer, then output is to the render target attached as color 

attachment zero of that frame buffer. The output is taken from the vector value stored in the first 

output variable of the fragment shader, as defined by its location. 

To use multiple render targets, use glDrawBuffers to set up custom mappings from fragment 

shader outputs to the frame buffer color attachment points. 

E.g., after binding the frame buffer as draw frame buffer, use the following call: 

 

GLenum bufs[3] = {GL_COLOR_ATTACHMENT0,  

                  GL_NONE, 

GL_COLOR_ATTACHMENT2}; glDrawBuffers(3, bufs);  

 

This sets up the mappings as follows: 

Â The first fragment shader output variable is directed to the render target at color attachment 

zero. 

Â The second fragment shader output variable is not used. 

Â The third fragment shader output variable is directed to the render target at color attachment 

two. 

https://www.khronos.org/opengles/sdk/docs/man3/
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NOTE: The mapping of each output variable is constrained. The first output variable may only be 

mapped as color attachment zero, the second as color attachment one, etc. To be more precise, the 

entry at (zero-based) index position i in bufs must be eitherGL_COLOR_ATTACHMENTi or 

GL_NONE. This is in regards to user-generated frame buffers; the rules for the default frame 

buffer are different. 

These bindings are stored as a part of a draw buffer configuration, which is part of frame buffer 

object state. 

For detailed API descriptions for glDrawBuffers, see the OpenGL ES 3.0 Reference Pages at 

https://www.khronos.org/opengles/sdk/docs/man3/, or see the definitive OpenGL ES 3.0 

Specification at https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf. 

3.2.3 Using query objects 

To submit an asynchronous query, it is necessary to set up a query object of the appropriate type. 

The first step is to obtain a query object ID. Do this using the glGenQueries function. 

NOTE: For some of the other OpenGL ES ID types, using the glGen* API to generate an ID is an 

optional step. It is possible to make up identifiers, which work just as well, provided each ID used 

is unique. 

This is not the case for glGenQueries. Use of this API is mandatory for all query objects. 

Core OpenGL ES 3.0 supports two types of queries: 

Â Boolean occlusion queries 

Â Primitive query objects 

Boolean occlusion queries provide a boolean result. The result is GL_TRUE if any samples 

created as a result of processing a set of draw calls make it through the depth test. Otherwise, the 

result is GL_FALSE. To create a Boolean occlusion query, bind the query object to one of the 

following two target types: 

Â GL_ANY_SAMPLES_PASSED ï The result is GL_TRUE only if any of the samples have 

made it through the depth test. 

Â GL_ANY_SAMPLES_PASSED_CONSERVATIVE ï The same as 

GL_ANY_SAMPLES_PASSED, except that the OpenGL ES implementation is allowed to 

use a less precise test, which can result in false positives being returned in some cases. 

Primitive query objects provide an unsigned integer result. The result is a counter value that is 

initially set to 0. To use a primitive query object, bind the query object to the target 

GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN. The counter is then incremented 

every time a vertex is written to one or more transform feedback buffers. For this to happen, bind 

the transform feedback buffer(s) and enabled transform feedback mode before making the draw 

call. 

Use the glBeginQuery function to bind a query object to a query target type, and to mark the start 

of a set of OpenGL ES commands for which the query result is to be determined. 

Use the glEndQuery function to mark the end of the set of commands. 

To retrieve the result of the query, call the function glGetQueryObjectuiv with the pname 

parameter set to GL_QUERY_RESULT. 

https://www.khronos.org/opengles/sdk/docs/man3/
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
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NOTE: OpenGL ES implementations are asynchronous in their nature, so query object results are not 

available immediately after a glEndQuery call. Before attemptting to retrieve the result value, 

always check its availability by calling glGetQueryObjectuiv with the pname parameter set to 

GL_QUERY_RESULT_AVAILABLE . Otherwise, it risks a pipeline stall. 

When no longer needing a query object, release it with a glDeleteQueries call. 

3.2.4 Using vertex array objects 

A vertex array object stores the following information for each vertex attribute array: 

Â Enabled/disabled state (GL_VERTEX_ATTRIB_ARRAY_ENABLED) 

Â Buffer object ID to be used as the vertex attribute array data source 

(GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING) 

Â Normalization setting (GL_VERTEX_ATTRIB_ARRAY_NORMALIZED) 

Â Pointer setting (GL_VERTEX_ATTRIB_ARRAY_POINTER) 

Â Size setting (GL_VERTEX_ATTRIB_ARRAY_SIZE) 

Â Stride setting (GL_VERTEX_ATTRIB_ARRAY_STRIDE) 

Â Uses unconverted integers setting (GL_VERTEX_ATTRIB_ARRAY_INTEGER) 

Â Vertex attribute divisor (GL_VERTEX_ATTRIB_ARRAY_DIVISOR) 

Â Buffer object ID to be used as the source of index data for indexed draw calls 

(GL_ELEMENT_ARRAY_BUFFER_BINDING) 

NOTE: Vertex array objects do not store generic vertex attribute settings (static vector values that can be 

assigned using glVertexAttrib* functions). These are considered to be part of the program object 

state instead. 

Before using a vertex array object, generate one or more IDs using glGenVertexArrays. 

NOTE: As with query objects, use of the glGen* API is mandatory for vertex array objects. 

By default, vertex array objects are configured as follows: 

Â None of the attributes are backed by vertex attribute arrays 

Â No buffer object is bound to the GL_ELEMENT_ARRAY_BUFFER buffer object binding 

point 

Further information about vertex array object configuration defaults can be found in the OpenGL 

ES 3.0 Specification http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf. 

Before modifying the vertex array object configuration or use it for draw calls, first bind it to the 

rendering context using glBindVertexArray. 

NOTE: For backward compatibility with OpenGL ES 2.0, a vertex array object with ID 0 is bound by 

default. While this default vertex array object is bound, the only available source for index and 

vertex data is client-side data pointers. 

http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
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Tip 

Avoid using client-side data pointers at all costs. They are very expensive in terms of 

performance. Every time a draw call is made using vertex attribute arrays backed by client-side 

data buffers, the attribute data needs to be copied from client process memory to video memory 

(VRAM). 

Once the vertex array object is bound, set the vertex attribute array state using the functions 

glVertexAttribIPointer and glVertexAttribPointer. This has not changed much since OpenGL ES 

2.0. For more information, see OpenGL ES 3.0 Reference Pages at 

http://www.khronos.org/opengles/sdk/docs/man3/html/glVertexAttribPointer.xhtml. 

The same principles that apply to setting vertex attribute array state also apply to getting vertex 

attribute array state. If a nondefault vertex array object is bound to the rendering context, then the 

glGetVertexAttrib* functions operate on that object rather than on the generic context state. 

Tip 

Quickly switch between different vertex array objects using glBindVertexArray. This is much 

faster than reconfiguring the vertex attribute arrays on-the-fly before every draw call. 

When finished with them, release one or more vertex array objects by calling 

glDeleteVertexArrays. 

3.3 Walkthrough of sample applications 

This section describes three OpenGL ES 3.0 demo applications from the Adreno SDK. It explains 

briefly how each demo works and highlights the most interesting features of the source code. 

3.3.1 2D array textures ï Demo 

Find this demo at the following directory: <SDK_install_dir>\Development\Tutorials\OpenGLES 

\20_Texture2DArrayOGLES30. The core of the implementation is found in the file main.cpp. 

The application demonstrates how to sample from 2D array textures. The source code locations 

described in this section are: 

Â Initialize function ï Block marked with the comment //Create a texture, loaded from an image 

file. 

Â Render function ï How the demo application renders, at the API level. 

Â Vertex and fragment shader bodies ï How a 2D array texture is sampled in ES Shading 

Language and how the rendering pipeline is organized in this demo application. 

3.3.1.1 Initialization 

Initialization is done by the Initialize function. It can be broken down into three separate parts: 

1. Two textures are loaded from TGA files 

2. A 2D array texture is created and initialized 

3. A program object is constructed and linked, using fragment and vertex shader bodies defined 

within the demo application code 

Loading the textures does not use OpenGL ES, so this document ignores it. 

http://www.khronos.org/opengles/sdk/docs/man3/html/glVertexAttribPointer.xhtml
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Setting up the 2D array texture is of more interest. Here is a breakdown of what happens in the 

code: 

 

glGenTextures( 1, &g_hTextureHandle );  

glBindTexture( GL_TEXTURE_2D_ARRAY, g_hTextureHandle );  

 

A single texture object ID is generated and is associated with a 2D Array Texture target. 

 

glTexParameteri( GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER,  

GL_LINEAR );  

glTexParameteri( GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER,  

GL_LINEAR );  

 

Magnification and minification filtering for the texture object is set to GL_LINEAR. This is 

important because the default setting for minification filtering requires mipmaps, and the demo 

application is not creating any. If this step was skipped, the texture object would be considered 

incomplete and any texture sampling functions used on this texture object would always return (0, 

0, 0, 1) instead of the a texture lookup result. 

 

glTexImage3D( GL_TEXTURE_2D_ARRAY, 0, internalFormat, nWidth[0],         

nHeight[0], g_nImages, 0, nFormat[0],         GL_UNSIGNED_BYTE,  

NULL );  

This call allocates storage space for two layers at mipmap level zero. 

NOTE: The layer contents are not uploaded in this call. 

 

for( int i = 0; i<g_nImages; i++) {     glTexSubImage3D( 

GL_TEXTURE_2D_ARRAY, 0, 0, 0, i, nWidth[i],  

nHeight[i], 1, nFormat[i], GL_UNSIGNED_BYTE,  

pImageData[i]); }  

 

This is where the layer contents are uploaded, looping to upload layer after layer. 

Finally, in the last part of the function, the program object is constructed and linked. There is 

nothing here that is new for OpenGL ES 3.0, so this document ignores it. 

3.3.1.2 Rendering a frame 

Here is a closer look at the Render function: 

 

glClearColor ( 0.0f, 0.0f, 0.5f, 1.0f );  

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );  
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Start by clearing both color and depth buffers. Since no frame buffer object is bound at this time, 

these operations are performed using the default frame buffer. 

 

glUseProgram( g_hShaderProgram ); glBindTexture(  

GL_TEXTURE_2D_ARRAY, g_hTextureHandle ); The demo then activates its 

program object  and binds the 2D array texture  object to the current texture 

unit .  

glVertexAttribPointer( g_VertexLoc, 4, GL_FLOAT, 0, 0,         

VertexPositions ); glEnableVertexAttribArray(  

g_VertexLoc );  

glVertexAttribPointer( g_TexcoordLoc, 2, GL_FLOAT, 0, 0,         

VertexTexcoord); glEnableVertexAttribArray(  

g_TexcoordLoc ); glDrawArrays( GL_TRIANGLES, 0, 6 ); 

glDisableVertexAttribAr ray( g_VertexLoc );  

glDisableVertexAttribArray( g_TexcoordLoc );  

 

Finally, configure and enable two vertex attribute arrays, draw a couple of triangles, and then 

disable both vertex attribute arrays again. 

NOTE: The vertex data is organized in such a way that the result triangles form a quad located at the 

center of the screen. Vertices emitted by a vertex shader invocation are positioned in a clip space 

which can be described as a cube spanning from (-1, -1, -1) to (1, 1, 1). When a primitive is built 

from these vertices, any part of that primitive not falling within the cube is clipped so that each 

vertex fits within the region defined by the cube. Therefore, to completely fill the surface of the 

two-dimensional back buffer with contents computed in the fragment shader stage, make sure that 

the draw call or calls generate a rectangle spanning from (-1, -1) (corresponding to the bottom-left 

corner) to (1, 1) (corresponding to the top-right corner). 

The demo centers the rectangle in the screen space but does not entirely fill the available surface. 

Try experimenting with the demo implementation to gain a better understanding of how screen 

space rendering works. 

3.3.1.3 Shaders 

The body of the vertex shader body is coded in the variable g_strVSProgram. 

 

#version 300 es in vec4 g_vVertex; in vec4  

g_vTexcoord; out   vec4 g_vVSTexcoord; void main() {      

gl_Position  = vec4( g_vVertex.x, g_vVertex.y,                           

g_vVertex.z, g_vVertex.w );     g_vVSTexcoord =  

g_vT excoord; }  

 

In the function main, the shader sets gl_Position to the value it gets from one of its input 

attributes, without applying any transformations. This implies that the input vertex data is 

expressed in the normalized device coordinate space. Texture coordinates are provided via the 

other input attribute and are also passed through to the fragment shader stage untransformed. 
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The body of the fragment shader is coded in the variable g_strFSProgram. 

 

uniform sampler2DArray g_sImageTexture;  

in vec4 g_vVSTexcoord;                     

out vec4 out_color; void main ()  

{  

    out_color = texture(g_sImageTexture, vec3(g_vVSTexcoord.xyx));  

}  

 

The shader declares a 2D array texture sampler uniform called g_sImageTexture. In the function 

main, the uniform is used to sample the texture. 

NOTE: The second argument of the texture call includes a third component. This specifies the index of 

the layer that the data is sampled from. 

Important 

The layer index of a 2D array texture is an integer value, so to know how this is derived from the 

supplied floating-point component, the process is as follows: 

1. Value is rounded to the nearest integer, e.g., 0.4 rounds to 0, but 0.5 rounds up to 1.0. 

2. Rounded value is clamped to the number of layers. For a 2D array texture with 3 layers, this 

would result in an integer value between 0 and 2, inclusive. 

3. Rounded and clamped value leaves the layer index that can be used for the sampling process. 

3.3.2 Rendering to 2D array textures ï Demo 

Find this demo at the following directory: <SDK_install_dir>\Development\Tutorials\ 

OpenGLES\25_FramebufferTextureLayerOGLES30. 

This application demonstrates a few OpenGL ES 3.0 features in action, including: 

Â Rendering to 2D array textures 

Â Blitting layers of a 2D array texture to different regions of the default frame buffer 

The demo uses an off-screen frame buffer to render a number of frames to successive layers of a 

2D array texture. Each frame shows a pyramid, rotated to a slightly different angle. Once 

rendered, these layers are used to composite the back buffer contents using the frame buffer 

blitting mechanism. Finally, the back buffer is swapped with the front buffer to present the 

rendered frame to the user. 

To get a better understanding of how the application works, look at the following areas: 

Â Configuring the off-screen frame buffer 

Â Carrying out the off-screen rendering 

Â Compositing the final rendering result 

The discussion of parts of the code that are similar to those already covered in the earlier demo 

walkthrough are skipped. 
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3.3.2.1 Configuring the off-screen frame buffer 

The off-screen frame buffer is constructed in CreateFBO. 

 

glGenTextures( 1, &g_hTextureHandle ); glBindTexture(  

GL_TEXTURE_2D_ARRAY, g_hTextureHandle );  

glTexParameteri( GL_TEXTURE_2D_ARRAY,  

GL_TEXTURE_MAG_FILTER,         GL_LINEAR );  

glTexParameteri( GL_TEXTURE_2 D_ARRAY, GL_TEXTURE_MIN_FILTER,  

GL_LINEAR ); glTexImage3D( GL_TEXTURE_2D_ARRAY, 0,  

nInternalFormat, nWidth,         nHeight, g_nLayers, 0,  

nFormat, nType, NULL );  

 

Above is the code that initializes a 2D array texture. This has 9 layers, since it is the value of the 

constant g_nLayers. 

 

glGenRenderbuffers( 1, &(*ppFBO) - >m_hRenderBuffer );  

glBindRenderbuffer( GL_RENDERBUFFER, (*ppFBO) - >m_hRenderBuffer ); 

glRenderbufferStorage( GL_RENDERBUFFER , GL_DEPTH_COMPONENT24, nWidth,  

nHeight );  

 

Here, it creates a separate renderbuffer to hold depth data at 24-bit precision. 

 

glFramebufferTextureLayer( GL_FRA MEBUFFER, GL_COLOR_ATTACHMENT0, 

g_hTextureHandle, 0, 0);  

glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,  

GL_RENDERBUFFER, (*ppFBO)- >m_hRenderBuffer );  

 

Now the frame buffer is configured with the following attachments: 

Â Layer zero of the 2D array texture is attached to color attachment point zero 

Â Renderbuffer is bound to the depth attachment point 

3.3.2.2 Off-screen rendering 

The off-screen rendering process is done by the first part of the render function: 

 

fo r(int i=0; i<g_nLayers; i++) {  

BeginFBO( g_pOffscreenFBO, i );  

glClearColor( 0.0f, 0.5f, 0.0f, 1.0f );  

RenderScene( fTime+i*0.1f );  

    EndFBO( g_pOffscreenFBO );  

}  
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The block loops over all 2D array texture layers. For each layer, BeginFBO is used to configure 

the frame buffer object, which it does as follows: 

 

glBindFramebuffer( GL_FRAME BUFFER, pFBO- >m_hFrameBuffer );  

glFramebufferTextureLayer( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,  

g_hTextureHa ndle, 0, layer);  

glViewport( 0, 0, pFBO - >m_nWidth, pFBO - >m_nHeight );  

 

Attach the current layer as color attachment zero. Also ensure that the viewport resolution stays 

synchronized to the texture resolution. If that is not done, then either the pyramid would not fit in 

the render target, or only part of the render target would be drawn to. 

Once this has been done, render makes a call to RenderScene, which is responsible for sending 

the commands needed to render the pyramid. 

 

glBindFramebuffer( GL_FRAMEBU FFER, 0 );  

glViewport( 0, 0, g_nWindowWidth, g_nWindowHeight );  

 

Finally, in EndFBO, bind back to the default frame buffer and reset the viewport resolution to the 

dimensions of the window. 

After the render loop has finished executing, all 2D array texture layers are filled with pyramids 

rotated to different angles. At this point, none of these pyramids have made it into the back buffer 

yet. 

3.3.2.3 Compositing the final image 

The composition process is implemented by the remaining part of the render function. 

 

FLOAT offsets[9][4] =  

{  

{ 0.0f,      0.0f,      1.0f/3.0f, 1.0f/3.0f },  

{ 1.0f/3.0f, 0.0f,      2.0f/3.0f, 1.0f/3.0f },  

{ 2.0f/3.0f, 0.0f,      1.0f,      1.0f/3.0f },  

{ 0.0f,      1.0f/3.0f, 1.0f/3.0f, 2.0f/3.0f },  

{ 1.0f/3.0f, 1.0f/3.0f, 2.0f/3.0f, 2.0f /3.0f },  

{ 2.0f/3.0f, 1.0f/3.0f, 1.0f,      2.0f/3.0f },  

{ 0.0f,      2.0f/3.0f, 1.0f/3.0f, 1.0f },  

{ 1.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 1.0f },  

{ 2.0f/3.0f, 2.0f/3.0f, 1.0f,      1.0f },  

};  

 

This starts with an array defining the regions where the pyramid images are to be placed. Nine 

rectangles are defined. The four values given for each rectangle are as follows: 

Â X coordinate of the top-left corner 

Â Y coordinate of the top-left corner 
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Â X coordinate of the bottom-right corner 

Â Y coordinate of the bottom-right corner 

 

glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 );  

glBindFramebuffer( GL_READ_FRAMEBUFFER,          

g_pOffscreenFBO - >m_hFrameBuffer );  

 

Prepare the frame buffer bindings prior to entering the loop that will do the compositing: 

Â The default frame buffer is made the target of all rendering operations to blit the pyramid 

images to the back buffer. 

Â The off-screen frame buffer is set to be the source for read operations; this tells 

glBlitFramebuffer where the source data should be taken from. 

 

for(int i=0; i< g_nLayers; i++)  

{  

    glFramebufferTextureLayer( GL_READ_FRAMEBUFFER,              

GL_COLOR_ATTACHMENT0, g_hTextureHandle, 0, i);     glBlitFramebuffer(  

0, 0, g_pOffscreenFBO - >m_nWidth,             g_pOffscreenFBO -  

>m_nHeight,             INT32(g_nWindow Width*offsets[i][0]),  

            INT32(g_nWindowHeight*offsets[i][1]),              

INT32(g_nWindowWidth*offsets[i][2]),  

            INT32(g_nWindowHeight*offsets[i][3]),  

            GL_COLOR_BUFFER_BIT, GL_LINEAR );  

}  

 

For each layer of the 2D array texture, two things must be done to copy the image data to the 

back buffer: 

1. Configure this layer as color attachment zero of the read frame buffer; this will be the source 

of the blit operation 

2. Use glBlitFramebuffer to blit one pyramid image from the read frame buffer to the back 

buffer at the location defined by the rectangle co-ordinates from the array 

When the loop has finished and the render function returns, the final image is now fully 

composited in the back buffer. It is now ready to swap the back buffer with the front buffer, so 

that the scene is made visible on the screen. 

3.3.3 Interleaved vertex buffer objects ï Demo 

Find this demo at the following directory: <SDK_install_dir>\Development\Tutorials\OpenGLES 

\19_InterleavedVBOOGLES30. 

It demonstrates a technique for preparing and rendering a set of primitives. The attribute data for 

the primitives is stored in an interleaved manner in a vertex buffer object. To render them, use the 

new draw call glDrawRangeElements, which was introduced in OpenGL ES 3.0. 
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The application uses many of the same elements already discussed in the previous demos, so this 

demo focuses on new and interesting aspects instead. 

3.3.3.1 Construction of an interleaved vertex buffer object 

The demo uses a single buffer object to store the following information: 

Â Screen-space vertex position 

Â RGBA color data for each vertex 

NOTE: The index data is not a part of this buffer. Indices are never taken from a vertex attribute array. 

Instead, they are downloaded from a buffer object bound to GL_ELEMENT_ARRAY_BUFFER. 

Color and vertex data is stored in a linear fashion, one vertex after another, in the same order as it 

is listed above. 

In the demonstration application, the data buffer is constructed in the function 

InitVertexAttributesData. A closer look is as follows: 

 

pVbuff = new VERTEX_ATTRIBUTES_DATA;  

 

The function sets up an instance of the VERTEX_ATTRIBUTES_DATA structure. This holds 

important properties of the vertex buffer object, as well as the data used for the draw calls. 

 

pVbuff - >nTotalSizeInBytes = nVsize + nCsize; pVbuff - >pVertices  

= (POS *)new CHAR[pVbuff - >nTotalSizeInBytes]; pVbuff -  

>pPosOffset = NULL; pVbuff - >pColorOffset =  

        (UINT8*)((UINT8*)pVbuff - >pPosOffset + sizeof(POS));  

pVbuff - >nStride = sizeof(POS) + sizeof(COLOR);  

 

The properties are configured as follows: 

Â nTotalSizeInBytes ï Total number of bytes the vertex buffer object should use 

Â pPosOffset ï Start offset for vertex position data 

Â pColorOffset ï Start offset for vertex color data 

Â nStride ï Number of bytes that separates vertex position and vertex color data between 

consecutive vertices; in this example, the stride for both attribute data types is exactly the 

same, which is why only one field is used to hold both values (see Figure 3-7) 
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Figure 3-7  Vertex buffer stride 

In the loop which follows, the vertex buffer is then populated with position and color data. 

Now, look at the Render function. Here is how the properties stored in the 

VERTEX_ATTRIBUTES_DATA are used to configure a vertex array object for use with the 

vertex buffer object. 

3.3.3.2 Using glDrawRangeElements 

A new type of a draw call was introduced in OpenGL ES 3.0. The new function, 

glDrawRangeElements, builds upon the concept of glDrawElements and introduces two new 

parameters: 

Â Start ï Minimum index value that is used for the purpose of the draw call 

Â End ï Maximum index value that is used for the purpose of the draw call 

If any of the index valuesðsupplied either via the GL_ELEMENT_ARRAY_BUFFER binding 

or via a client-side pointerðis outside the defined range, then a mistake has been made and the 

resulting behavior will be undefined. 

The benefit of using this type of draw call type is that if the OpenGL ES implementation knows 

in advance what set of index values will be used for the drawing process, then there is an 

opportunity to reduce the amount of vertex attribute array data that needs to be transferred in 

order to execute the request. 

Suppose that the mesh consists of a few layers, where each layer needs to be rendered with a 

different shader or using a different set of textures. When rendering each layer, use 

glDrawRangeElements to tell the OpenGL ES implementation what range of index values the 

draw call will be using. In many cases, this results in improved performance. 

For the demo application, the draw call is executed in the render function. This function sets up 

the vertex attribute arrays, configures the GL_ARRAY_BUFFER and 

GL_ELEMENT_ARRAY_BUFFER bindings, and then issues the draw call. 

3.4 About the OpenGL ES implementation 

This section gives details of the capabilities of the Adreno architecture within an OpenGL ES 3.0 

context. 
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3.4.1 GL constant values 

Table 3-2  GL_MAX constant values ï OpenGL ES 3.0 

Pname Value 

GL_MAX_3D_TEXTURE_SIZE 2048 

GL_MAX_ARRAY_TEXTURE_LAYERS 2048 

GL_MAX_COLOR_ATTACHMENTS 8 

GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS 197504 

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 32 

GL_MAX_COMBINED_UNIFORM_BLOCKS 24 

GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS 197632 

GL_MAX_CUBE_MAP_TEXTURE_SIZE 16384 

GL_MAX_DRAW_BUFFERS 8 

GL_MAX_ELEMENT_INDEX 2147483647 

GL_MAX_ELEMENTS_INDICES 2147483647 

GL_MAX_ELEMENTS_VERTICES 134217727 

GL_MAX_FRAGMENT_INPUT_COMPONENTS 135 

GL_MAX_FRAGMENT_UNIFORM_BLOCKS 12 

GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 896 

GL_MAX_FRAGMENT_UNIFORM_VECTORS 224 

GL_MAX_PROGRAM_TEXEL_OFFSET 7 

GL_MAX_RENDERBUFFER_SIZE 16384 

GL_MAX_SAMPLES 4 

GL_MAX_SERVER_WAIT_TIMEOUT 1000000000 

GL_MAX_TEXTURE_IMAGE_UNITS 16 

GL_MAX_TEXTURE_LOD_BIAS 31 

GL_MAX_TEXTURE_SIZE 16384 

GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS 128 

GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS 4 

GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS 4 

GL_MAX_UNIFORM_BLOCK_SIZE 65536 

GL_MAX_UNIFORM_BUFFER_BINDINGS 24 

GL_MAX_VARYING_COMPONENTS 128 

GL_MAX_VARYING_VECTORS 32 

GL_MAX_VERTEX_ATTRIBS 32 

GL_MAX_VERTEX_OUTPUT_COMPONENTS 133 

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 16 

GL_MAX_VERTEX_UNIFORM_BLOCKS 12 

GL_MAX_VERTEX_UNIFORM_COMPONENTS 1024 

GL_MAX_VERTEX_UNIFORM_VECTORS 256 

GL_MAX_VIEWPORT_DIMS 16384 x 16384 
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Table 3-3  Other GL constant values ï OpenGL ES 3.0 

Pname Value 

GL_ALIASED_LINE_WIDTH_RANGE 1.0 to 8.0 

GL_ALIASED_POINT_SIZE_RANGE 1.0 to 1023.0 

GL_MIN_PROGRAM_TEXEL_OFFSET -8 

GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT 4 
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4 Using OpenGL ES 3.1 with Adreno 

4.1 New features in OpenGL ES 3.1 

This section provides a short introduction to some of the more important features introduced in 

OpenGL ES 3.1. For further details, see the following: 

Â OpenGL ES 3.1 Specification ï http://www.khronos.org/registry/gles/specs/ 

3.1/es_spec_3.1.pdf 

Â OpenGL ES Shading Language 3.10 Specification ï http://www.khronos.org/registry/gles/ 

specs/3.1/GLSL_ES_Specification_3.10.pdf 

Â OpenGL ES 3.1 Reference Pages ï http://www.khronos.org/opengles/sdk/docs/man31/ 

4.1.1 Atomic counters 

OpenGL ES 3.1 provides a new class of unsigned integer variables called atomic counters. These 

counters can be accessed by shaders using different atomic operations. The atomic nature of these 

operations means that when multiple shader invocations attempt to access a single atomic counter 

at the same time, these accesses will be serialized so that no thread races occur. 

To define an atomic counter in a shader, use the new ES Shading Language type atomic_uint. The 

type is opaque, so the only way of accessing or manipulating the counter value from the shader is 

by using one of the new accessor functions, which include: 

Â atomicCounter ï Returns the counter value 

Â atomicCounterDecrement ï Decrements the counter value and returns the new value 

Â atomicCounterIncrement ï Increments the counter value and returns the value prior to the 

increment operation 

Atomic counters must be backed by buffer object storage space. Use the new indexed buffer 

object binding point, GL_ATOMIC_COUNTER_BUFFER, to associate the atomic counters with 

regions of buffer objects. Multiple atomic counters are allowed to use a single buffer object, as 

long as their storage space does not intersect. 

To associate an atomic counter with a unique buffer object region, there are two new layout 

qualifiers to use when declaring an atomic counter: 

Â Binding ï Specifies the index for the buffer object binding point, e.g., it determines which 

buffer object will be used and must always be specified 

Â Offset ï Specifies the offset in bytes of the atomic counter within the buffer object 

For more details about using these qualifiers, see the OpenGL ES 3.1 Shading language 

Specification at http://www.khronos.org/registry/gles/specs/3.1/ 

GLSL_ES_Specification_3.10.pdf. 

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/opengles/sdk/docs/man31/
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
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For example, suppose the task is to find out which of the values passed in the input dataset are 

prime numbers. Solve this problem by implementing a compute shader. 

A single compute shader invocation would take the unique work group and work item ID, convert 

this information to an unique entry index, and use that index to address the input dataset to 

retrieve the candidate number. Once the invocation knows which value to process, it can move on 

and perform necessary checks that would determine whether the value is a prime. If the input 

value is indeed found to be a prime, then the compute shader invocation could store it in external 

storage. But how do atomic counters fit in the picture here? 

Use the counters as a means of obtaining index values that will be guaranteed to be unique across 

all compute shader invocations that have been scheduled to run. Use an OpenGL ES Shader 

Language instruction that increments the atomic counter, returning the value of the counter prior 

to the increment. Should more than one shader invocation attempt to increment the counter at the 

same time, it is guaranteed these requests will be serialized. Once the compute shader invocation 

has obtained an unique counter value, it can use it to store the prime number that it has found in a 

shader storage buffer or an image, at an offset that will not be overwritten by any other compute 

shader invocation. Finally, once all the compute shader invocations finish executing, the counter 

value serves as a count of the number of primes found. The application can then download the 

prime number values from the buffer object region or the texture mipmap that was used for result 

storage, back into process space. 

NOTE: In core OpenGL ES 3.1, support for atomic counters is guaranteed only at the compute shader 

stage. They may be supported at other shader stages as well, but this is not necessarily the case. 

4.1.2 Compute shaders 

OpenGL ES 3.1 introduces a completely new type of shaders known as compute shaders. These 

do not form part of the normal rendering pipeline and can be used to execute data processing 

tasks using the GPU. 

The isolated nature of compute shaders has a number of consequences: 

Â They do not support input attributes or output variables 

Â They are not invoked once per vertex as are vertex shaders 

Â No other shader stage precedes or follows their execution 

However, they are like regular shaders in that they can access atomic counters, image variables, 

shader storage buffers, textures, uniforms, and uniform blocks. 

For instance, how does a compute shader communicate with the outside world? After all, it 

cannot use input attributes or output variables. The answer is that it can use the object types 

mentioned above. Of these, only atomic counters, image variables, and shader storage buffers can 

be written to by the shader as it runs. When a compute shader wants to store the result of its work, 

it can use one of the new atomic counter functions, update the contents of an image, or write to a 

buffer variable. 

Because compute shaders operate outside the normal rendering pipeline, they are not invoked via 

a draw call. Instead, the new glDispatchCompute function is used to launch the operation. 

Before the computation can start, the work to be done must be split into work units. 



QualcommÈ AdrenoÊ OpenGL ES Developer Guide Using OpenGL ES 3.1 with Adreno 

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 77 

 

Each unit is processed by a work group. A single work group consists of a number of invocations, 

which can potentially process that work unit in parallel. The number of invocations used is 

defined by the shader. The invocations are arranged in a 1D, 2D or 3D grid, according to the 

needs of the shader. The dimensions of the grid define the local work group size. There are 

implementation-specific constraints on the maximum size of a local work group. 

Those constraints are the reason why work must usually be split into multiple units. 

glDispatchCompute takes a set of arguments defining work group counts in the X, Y and Z 

dimensions. This allows the initiation of the processing of 3-dimensional array of work units with 

a single API call. Recall that each of those work units can be made up of a 3-dimensional array of 

shader invocations. 

The invocations within a single work group can synchronize their execution using the new ES SL 

function groupMemoryBarrier. They can communicate with each other using shared variables. 

They can also exchange information using writable objects such as images, provided that they 

synchronize access using with one of the new ES SL functions: barrier, memoryBarrier*, or 

groupMemoryBarrier. 

Important 

Work groups can be executed in any order and are not guaranteed to be executed in parallel. This 

means that any attempt to synchronize execution flow or resource access between different work 

groups can potentially lead to deadlocks. It is not possible to communicate or synchronize 

execution flow between multiple work groups, only between different invocations within the 

same work group. 

Compute shaders allow for more flexibility in the way work is organized, thanks to shared 

variables, which are available in compute shaders, but not in other shader types. As a result, it is 

becoming increasingly common for them to be used for AI, physics, or post-processing effects. 

Tip 

Do not interleave compute and graphics shaders. Under the Adreno architecture, switching 

between the two pipeline types is expensive and should be avoided. Instead, batch the draw calls 

and dispatch calls to reduce the number of times the driver must switch. 

4.1.3 ES shading language enhancements 

The following enhancements have been introduced to OpenGL ES 3.1 Shading Language: 

Â The binding layout qualifier can now be used to specify an initial binding point associated 

with a uniform block or sampler uniform 

Â The function to split a floating-point number into significand and exponent (frexp) 

Â The function to build a floating-point number from significand and exponent (ldexp) 

Â The functions to perform 32-bit unsigned integer add and subtract operations with carry or 

borrow (uaddCarry, usubBorrow) 

Â The functions to perform 32-bit signed and unsigned multiplication, with 32-bit inputs and a 

64-bit result spanning two 32-bit outputs (imulExtended, umulExtended) 

Â The functions to perform bit-field extraction, insertion and reversal (bitfieldExtract, 

bitfieldInsert, bitfieldReverse) 

Â Multi -dimensional arrays can now be defined in ES SL code 
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Â The number of bits set to 1 in an integer value can now be determined with a single call 

(bitCount) 

Â The position of the most or least significant bit set to 1 can now be determined with a single 

function call (findLSB, findMSB) 

Â Texture gather functionality is now available in the ES Shading Language (textureGather, 

textureGatherOffset); these functions can be used to retrieve the 2x2 footprint that is used for 

linear filtering in a texture lookup operation 

Â The functions to pack four 8-bit integers to a 32-bit unsigned integer and to unpack a 32-bit 

unsigned integer to four 8-bit integers (packUnorm4x8, packSnorm4x8, unpackUnorm4x8, 

unpackSnorm4x8) 

Â The locations of uniforms in the default uniform block can now be preconfigured directly in 

ES Shading Language by using the location layout qualifier 

ES Shading Language features covered in other sections of this chapter have been omitted from 

the above list. 

4.1.4 Images and memory barriers 

Earlier in the chapter, atomic counters were introduced and showed how they provide a means of 

communication between a shaderðsuch as a  compute shaderðand the outside world. However, 

atomic counters are a limited tool. They can only represent unsigned integer values, and the set of 

functions that operate on them is restricted. If the shader needs a more powerful means of data 

exchange, one tool for use is images, which is another new feature introduced in OpenGL ES 3.1. 

An image is an opaque uniform that points to a specific level of a texture. A number of different 

texture types are supported by images, for instance: 

Â 2D textures (defined by the ES Shader Language types image2D, iimage2D, and uimage2D) 

Â 2D array textures (defined by the ES Shader Language types image2DArray, iimage2DArray, 

and uimage2DArray) 

Â 3D Textures (defined by the ES Shader Language types image3D, iimage3D, and uimage3D) 

Â Cubemap textures (defined by the ES Shader Language types imageCube, iimageCube, and 

uimageCube) 

Images are restricted to using a subset of the internal formats available in OpenGL ES 3.1: 

Â GL_R32I 

Â GL_R32F 

Â GL_R32UI 

Â GL_RGBA16F 

Â GL_RGBA16I 

Â GL_RGBA16UI 

Â GL_RGBA32I 

Â GL_RGBA32F 

Â GL_RGBA32UI 

Â GL_RGBA8 
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Â GL_RGBA8I 

Â GL_RGBA8UI 

Â GL_RGBA8_SNORM 

Once a mipmap level of a texture is assigned to an image, it can be read from and written to that 

image directly from a shader. The cost associated with that operation is usually greater than that 

of using atomic counters, so only use images when it is necessary to do so. 

NOTE: When performing load operations on an image, the texel location must be provided using integer 

coordinates. No texture filtering capabilities are provided by images. 

Any conforming OpenGL ES 3.1 implementation will support at least four image uniforms at the 

compute shader stage. If  images are used at other shader stages, support is not guaranteed, so 

always check first, using the appropriate GL_MAX_*_IMAGE_UNIFORMS constant. 

When using images, pay attention to memory consistency issues. There are a number of factors to 

consider, including: 

Â Shader invocations are executed in a largely undefined order 

Â The underlying memory that can be accessed through an image can also be changed by other 

invocations on-the-fly  

Â OpenGL ES may cache store operations from one shader invocation, so other invocations 

may not see the update 

Â OpenGL ES is also allowed to cache values fetched by memory reads and to return the 

cached value to any shader invocation accessing the same memory 

It is possible to exert a degree of control over these OpenGL ES behaviors by using the following 

memory qualifiers on an image declaration: 

Â Coherent ï Any write operations performed on this image must be reflected in the results of 

reads subsequently performed by other shader invocations 

Â Volatile ï Any read operations performed on the image must reflect the results of updates to 

the underlying memory, which may have been made by another shader invocation 

Â Restrict ï A hint to the OpenGL ES implementation and it is asserted that the underlying 

memory will be modified only from the current shader stage and through the image defined 

using this keyword 

Â Readonly ï Restricts the image to use for load operations 

Â Writeonly ï Restricts the image to use for store operations; memory accesses across multiple 

shaders are largely unsynchronized: 

Ã Relative order of reads and writes to a single shared memory address from multiple 

separate shader invocations is largely undefined 

Â Order of accesses to multiple memory addresses performed by a single shader invocation, as 

observed by other shader invocations, is also undefined 
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To synchronize memory transactions, shaders can use the new memoryBarrier function. This 

function waits for the completion of all pending memory accesses relating to the use of image 

variables. The results of all store operations performed on coherent variables prior to the 

memoryBarrier call will be visible to load operations subsequently executed in any shader 

invocation at any shader stage. 

These are the synchronization constructs for use in shader code. A memory barrier may need to 

be injected at the API level (see glMemoryBarrier at http://www.khronos.org/opengles/sdk/docs 

/man31/html/glMemoryBarrier.xhtml in the OpenGL ES 3.1 Reference Pages). Consider a shader 

that accesses the same memory that is being used for shader image load/store operations but by 

other means, e.g., texture fetch. The memoryBarrier function in shader code is only guaranteed to 

synchronize those memory accesses that are made using image variables and atomic counters. 

Correct synchronization in such a case may require use of an API-level memory barrier. 

Images are useful for all techniques that need to update arbitrary locations of a texture on-the-fly. 

Example use cases include dynamic scene voxelization. 

4.1.5 Indirect draw calls 

In OpenGL ES 3.0, when making a draw call, function parameters such as the following needed 

to be passed: 

Â Primitive mode 

Â Start index 

Â Number of indices to be rendered 

Â Other parameters, depending on the type of the draw call 

In the context of OpenGL ES 3.0, this was quite sufficient, given the lack of tools that could have 

been used to generate content on-the-fly directly on the GPU. However, with the advent of 

compute shaders, shader storage buffer objects (SSBOs), and atomic counters, the need arose for 

a draw call that could source these parameter values from information stored in VRAM. 

For instance, consider a case where a compute shader processes the contents of a rendered frame 

and detects bright locations in that frame. These locations are then stored in an image or in an 

SSBO. That information will later be used to blend the bright spots with small Bokeh-textured 

quads. The compute shader needs to use an atomic counter to keep track of how many spots have 

been detected. Remember that atomic counters use buffer object storage. That means that the 

number of bright spots is available in VRAM, and it should be able to pass that value directly into 

the draw call. Without indirect draw callsðintroduced in OpenGL ES 3.1ðthat would not have 

been possible. It would have needed to map the buffer object region into process space, to read 

the counter value, and then to pass the value back to OpenGL ES as a draw call parameter. 

OpenGL ES 3.1 solves this problem with indirect draw calls: 

Â glDrawArraysIndirect ï Same functionality as glDrawArraysInstanced 

Â glDrawElementsIndirect ï Same functionality as glDrawElementsInstanced 

The indirect versions of these two draw calls read their input parameter values from a buffer 

object bound to the GL_DRAW_INDIRECT_BUFFER binding point, instead of taking them as 

formal parameters of the function call. The exception is that the mode and type arguments are still 

passed as formal parameters. 

http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
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A previous section of this chapter discusses compute shaders. The function used to launch 

compute shaders, glDispatchCompute, also has an indirect version called 

glDispatchComputeIndirect. In this case, the binding point used for the parameter values is 

GL_DISPATCH_INDIRECT_BUFFER rather than GL_DRAW_INDIRECT_BUFFER. 

4.1.6 Multisample textures 

Rendering to multisample attachments was introduced in OpenGL ES 3.0. The support came with 

a few notable limitations: 

Â Use of renderbuffers for the process 

Â Renderbuffer requirement implied that multisampled data in the shaders could not be sampled 

and that the contents had to be ñflattenedò by blitting the multisample renderbuffer storage 

into a single-sampled regular texture, which could then be accessed using the usual texture 

sampling methods 

Â No feasible way of reading individual sample values 

Â Not possible to specify at the API level which samples should be modified during the 

execution of a draw call 

These are some of the issues that multisample textures, introduced in OpenGL ES 3.1, aim to 

address. 

Multisample textures can be created using the new glTexStorage2DMultisample entry point with 

the GL_TEXTURE_2D_MULTISAMPLE texture target. Mutable multisample textures are not 

supported. 

Multisample textures do not have mipmaps. Also, since the actual physical layout of the 

underlying data is hardware dependent, the only way to write data to multisample textures is by 

rendering to them. Likewise, the only permissible way of reading the contents is by sampling the 

texture. Sampling can only be done using nearest filtering. If the texture is configured for linear 

or trilinear filtering, it will be considered incomplete. 

To render to a multisample texture, attach it to one of the frame buffer object attachment points. 

Do this using the glFramebufferTexture2D function. 

NOTE: Frame buffer completeness rules require all attachments to be multisample if any one of them is. 

To sample from a multisample texture, use a new sampler type called sampler2DMS. A 

multisample texture sampler can use only one texture sampling function, texelFetch. In addition 

to the usual parameters of a sampling function, texelFetch takes an additional integer parameter 

specifying the sample index for sampling. 

NOTE: The texelFetch function takes integer texture coordinates. This makes it clear that bilinear 

interpolation is not supported. 

The new API function glSampleMaski provides the ability to mask the set of samples to be 

updated on subsequent draw calls. This will work for frame buffer attachments of both types: the 

new multisample textures and the renderbuffers used for multisampling in OpenGL ES 3.0. 

The most significant use-case for multisample textures is in deferred renderers. These are now 

able to use more complex anti-aliasing mechanisms, because they now have a chance to access 

individual samples when sampling G-buffer contents. 
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Tip 

Multisample textures are expensive, as the Adreno driver needs to load or store <number of 

samples> * <number of bytes per surface> bytes when switching render targets. Consider blitting 

the multi-sample textures to single-sample containers as soon as the multi-sample data is no 

longer needed. Then use the single-sampled representation instead of the multi-sample one, 

saving on both bandwidth and memory usage. 

4.1.7 Separate shader objects 

One of the key object types in OpenGL ES is program objects. They are needed to carry out any 

kind of draw call. As applications become more complex, it is not unusual for a modern OpenGL 

ES applications to create hundreds of program objects. 

Use of a large number of program objects carries some costs: 

Â Longer loading times, as each program object needs to be linked (or loaded as a blob from 

external storage) before it can be used for drawing operations 

Â Increased memory usage 

Separate shader objects address these issues. There is now no need for the expensive process of 

constructing a program object and linking a number of shader objects. Instead, each shader object 

can be made into a shader program. Shader programs (one per shader stage) can then be plugged 

into a new object called pipeline object. Once a pipeline object is bound to the rendering context, 

it is used for all draw calls, provided no other program object has been made active. 

Before a shader program can be used in a pipeline object, it needs to be linked. This process is 

similar to linking a program object, but is limited to that specific shader stage. Once a shader 

program is linked, the binary representation can also be saved to reuse it next time the application 

is launched. 

Using shader programs, the application can now build pipeline objects on-the-fly. This is much 

more efficient than the old method using program objects for the following reasons: 

Â Pipeline objects do not need to be linked; plug the shader programs into a pipeline object and 

then start issuing draw calls. 

Â It is common for an application to use many program objects that all have the same vertex 

shader in common and are differentiated by the fragment shader. With separate shader 

objects, the shader program for the vertex shader needs to be built only once. The same 

shader program can then be reused in a pipeline object as many times as needed. This saves 

time the linker would otherwise have to spend analyzing the same vertex shader repeatedly. 

Shader programs hold uniform state information. If using the separate shader objects approach, 

configure uniform values separately for each shader program. This is not the case when using 

program objects. The uniform state is stored in a persistent fashion, so there is no worry about 

that information getting lost when switching to a different pipeline object. Though, if reusing the 

same vertex shader program between multiple pipeline objects, remember to update all uniforms 

that need to take different values for different pipeline configurations. 
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4.1.8 Shader storage buffer objects 

In a previous chapter Uniform Buffers were discussed. These were one of the more important 

features introduced in OpenGL ES 3.0. However, they still have two unfortunate constraints: 

Â The maximum size, in a worst-case scenario, can be as low as 16 KB. If multiplying the 

number by the worst-case maximum number of uniform blocks available for use in a single 

shader stage (which is 12), this gives a total of 192KB. This is usually enough, but it does 

require that the data can be split up, which is not always practicable. 

Â Uniform buffers are read-only. 

SSBOs, introduced in OpenGL ES 3.1, address both problems. They are guaranteed to support 

data blocks of size up to 227 bytes (134,217,728 bytes), and they can be used for both read and 

write operations. The actual maximum data block size depends on the OpenGL ES 

implementation and may exceed the above value. This can be checked by calling glGetInteger64v 

with the pname parameter set to GL_MAX_SHADER_STORAGE_BLOCK_SIZE. 

All OpenGL ES 3.1 implementations must support SSBOs at the compute shader stage. Support 

at other shader stages is optional. 

The SSBO equivalent of a uniform block is called a shader storage block, with the following key 

differences: 

Â In OpenGL ES Shading Language code, the uniform keyword is replaced by buffer. 

Â The last member of a shader storage block is allowed to be an unsized array. The size of the 

array is calculated at run time, in such a way that it makes full use of the actual size of the 

data store backing the shader storage block. 

Â On Adreno-based platforms, it is significantly faster to access a uniform block than a shader 

storage block. 

Shader invocations may modify the contents of a shader storage block at any time. Pay attention 

to the synchronization of memory accesses. Section 4.1.4 discusses a range of memory qualifier 

keywords. These keywords can provide valuable hints to OpenGL ES implementation as to how 

the variables are going to be used. The same keywords may be used in the declaration of a shader 

storage block variable. One use case where this will be absolutely necessary is where the data is 

going to be reused between different shader stages executed for a single draw call. Under some 

circumstances, the use of memory barriers is needed to ensure no thread races occur. These 

barriers can operate either in OpenGL ES Shader Language code or at the level of the OpenGL 

ES API. Further details can be found here: 

Â OpenGL ES 3.1 Specification ï http://www.khronos.org/registry/gles/specs/3.1/ 

es_spec_3.1.pdf 

Â OpenGL ES 3.1 Reference Pages for glMemoryBarrier ï http://www.khronos.org/ 

opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml and memoryBarrier ï

http://www.khronos.org/opengles/sdk/docs/man31/html/memoryBarrier.xhtml 

Â OpenGL ES 3.1 Shader Language Specification (see Section 4.9, Memory Access Qualifiers) 

ï http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf 

In some cases, it may be possible to avoid the need for using the synchronization techniques 

described above. As an alternative, use an atomic function. Atomic functions are a set of 

functions, introduced in the OpenGL ES 3.1 Shading Language, which apply a number of 

different atomic operations to buffer or shared variables of signed or unsigned integer types. 

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/memoryBarrier.xhtml
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
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The following functions are provided: 

Â atomicAdd ï Adds two values together 

Â atomicAnd ï Performs a bit-wise AND operation on two values 

Â atomicCompSwap ï Assigns a value to a variable, if the existing value of the variable 

contents differs from the value provided by the caller in another argument 

Â atomicExchange ï Sets a variable to a new value and returns the original value 

Â atomicMax ï Returns the maximum of two values 

Â atomicMin ï Returns the minimum of two values 

Â atomicOr ï Performs a bit-wise OR operation on two values 

Â atomicXor ï Performs a bit-wise XOR operation on two values 

Here are a few example use cases for shader storage buffer objects: 

Â Are the main way for compute shaders to exchange data with the outside world 

Â Can be used by shaders to access large datasets which would have been too big to fit into a 

texture, e.g., the vertex pulling technique 

4.2 Walkthrough of sample applications 

This section discusses three sample applications. Each of the samples showcases one of the new 

OpenGL ES 3.1 features covered in the previous section of this chapter. 

4.2.1 Separate shader objects ï Demo 

 

Figure 4-1  Separate shader objects demo 

This application demonstrates how to use separate shader objects. It uses a single vertex shader 

and one of three different fragment shaders to build a pipeline object. Every five seconds, the 

application switches the fragment shader used by the pipeline object. Observe that the change of 

shader is virtually instantaneous and does not introduce any lag into the rendering process. 

The shaders used are reasonably straightforward. 
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The vertex shader: 

 

#version 310 es  

out gl_PerVertex {    

vec4 gl_Position; };  

layout(location = 0) out vec2 uv;  

void main() {   switch  

(gl_VertexID)   {      

case 0:  

      gl_Position = vec4( - 1.0, - 1.0, 0.0, 1.0);  

      uv          = vec2( 0.0,  1.0);  

      break;  

    case 1:  

      gl_Position = vec4( - 1.0, 1.0, 0.0, 1.0);        

uv           = vec2( 0.0, 0.0);  

      break;  

    case 2:  

      gl_Position = vec4(1.0, - 1.0, 0.0, 1.0);        

uv          = vec2(1.0,  1.0);  

      break;  

    case 3:  

      gl_Position = vec4(1.0, 1.0, 0.0, 1.0);        

uv          = vec2(1.0, 0.0);  

      bre ak;    

}  

};  

 

This vertex shader outputs a full-screen quad built out of a triangle strip. It does not take any 

input data but configures two output variables: 

Â The vertex position is set to one of four predefined locations, depending on the gl_VertexID 

value for the running shader invocation. The vertex positions are defined so that a triangle 

strip using the four vertices will form a full-screen quad. 

Â The UV coordinates are also passed down the rendering pipeline. This vector is used to 

construct the gradient in the fragment shader stage. 

The fragment shaders generate gradients, using the information prepared in the vertex shader 

stage. The first fragment shader generates a horizontal gradient, the second one creates a vertical 

gradient, and the third one shows the result of summing both gradients. 

The first of the fragment shaders: 

 

#version 310 es  

layout(location = 0) in vec2 uv;  

out vec4 result;  

void main() {   result = vec4(uv.x,  

0.0, 1.0, 1.0); };  
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Now look at how the demo: 

Â Initializes the shader programs 

Â Sets up the pipeline object 

Â Renders each frame 

4.2.1.1 Setting up the shader programs 

The function_create_separate_shader_program is used to set up a shader program. This function 

is called four times in all, to set up three fragment shader programs and one vertex shader 

program. This happens when rendering the first frame. 

There are two different methods to set up a shader program in OpenGL ES: 

Â A shader program can provide implementations of multiple shader stages. While there might 

seem to be little advantage in doing this where only fragment and vertex shaders are 

involved, it makes more sense when geometry, tessellation control, and tessellation 

evaluation shader stages come into the equation. 

The first step is to set up a shader object for each shader stage to be included in the shader 

program. Once all of the shaders have been successfully compiled, create the shader program. 

Setting up a shader program works just like setting up a regular program object, except for 

one thing: before linking it, set its GL_PROGRAM_SEPARABLE property to GL_TRUE. 

This is done using a new API function called glProgramParameteri. Then, attach the shader 

objects and link the program object using glLinkProgram. If the above steps completed 

without error, then the shader program is ready for use. 

Â If the shader program is to provide the implementation of a single shader stage only, take a 

shortcut and use a single call to glCreateShaderProgramv. This carries out all of the steps 

described for the first method, and returns the ID of the shader program. 

Before attempting to use the object, verify that the shaders compiled successfully and that the 

shader program was correctly linked. Since there is no access to shader objects for the 

compilation, check for successful compilation by verifying the GL_LINK_STATUS property 

of the returned program object. 

NOTE: The shader info log for any shader failing to compile will be appended to the program info log. 

This information may be helpful for diagnosing the error. It can be retrieved using the API entry 

point glGetProgramInfoLog. 

An example from the demo application: 

 

bool   result    = true;  

GLuint result_id = 0;  

result_id = glCreateShaderProgramv(shader_type,  

1,  

&shader_body); if (result_id != 0) {     GLint  

link_status = GL_FALSE;  

    glGetProgramiv(result_id,  

GL_LINK_STATUS,  

&link_status);  
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    if (link_status != GL_TRUE)  

    {         result =  

false;     } } else {  

result = false; }  

if (!result && result_id != 0)  

{      

glDeleteProgram(result_id);  

    result_id = 0;  

}  

return result_id;  

 

The example application uses the shortcut approach. The implementation calls 

glCreateShaderProgramv and then checks if a valid program object ID was returned. This ID is 

then used to check the link status to determine if the shader program has been initialized 

successfully. 

If  an error arises at any stage after the program object has been created, release it by calling 

glDeleteProgram. 

4.2.1.2 Setting up the pipeline object 

After setting up the shader programs, initialize the pipeline object. The first step is to generate a 

pipeline object ID using a call to glGenProgramPipelines. Associate the ID with a pipeline object 

instance using glBindProgramPipeline. 

Here is the code from the demo application: 

 

glGenProgramPipelines(1, &_pipeline_object_id); 

glBin dProgramPipeline(_pipeline_object_id);  

 

The new pipeline object is now bound to the rendering context, but it does not yet define any 

shader stages. If trying to issue a draw call while an uninitialized pipeline object is bound, the 

results are undefined. 

NOTE: The pipeline object will only be used by OpenGL ES if there is no other program object activated 

for this rendering context. 

In the example application, the same vertex shader program is always used, but it will  be 

switching between different fragment shader programs every five seconds. It therefore makes 

sense to set up the vertex shader stage during initialization, as follows: 

 

glUseProgramStages(_pipeline_object_id,  

GL_VERTEX_SHADER_BIT, 

                   _vs_id);  

 

The shader program for the vertex shader stage has ID _vs_id. The above call attaches this shader 

program to the pipeline object. 
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4.2.1.3 Using the pipeline object 

At this stage the pipeline object is set up and is bound to the rendering context. However, it 

defines a vertex shader stage only. No fragment shader stage is present. This means that any 

attempt to use the pipeline object for a draw call will result in undefined behavior. 

The configuration of the fragment shader stage is done in a code block that will be executed 

under two conditions: 

Â If rendering the very first frame 

Â If at least five seconds have passed since the last time this code block was entered 

The code in this block determines which fragment shader stage should be used, based on elapsed 

time since the application started running. The IDs of the shader programs are held in the array 

fs_ids, and the variable n_fs_id_to_use is the array index of the shader program that is being 

used. 

Configure the fragment shader stage of the pipeline object using the following call: 

 

glUseProgramSta ges(_pipeline_object_id,                    

GL_FRAGMENT_SHADER_BIT, 

fs_ids[n_fs_id_to_use]);  

 

Now that the pipeline object has both shader stages configured, safely issue a draw call that 

covers whole screen space with a quad built of two triangles: 

 

glDra wArrays(GL_TRIANGLE_STRIP,  

0,  /* first */  

             4); /* count */  

4.2.2 Multisample textures ï Demo 

 

Figure 4-2  Multisample textures demo 
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The demo shows a rotating wireframe cube which is first rendered to a multisample texture, and 

then blitted into the back buffer. A number of different multisample textures are created, each 

holding a different number of samples per texel. The user can switch between these textures in 

order to see the difference in terms of visual quality. 

As with the previous example, the shaders being used in this demo are simple: 

Â The vertex shader takes a model-view-projection matrix as input and uses it to compute the 

clip space coordinates for the input vertex position 

Â The fragment shader sets the one and only output variable to a fully opaque red color 

Since this demo is working with a real mesh, much of the code is dedicated to the vertex buffer 

object setup process. However, it focuses solely on aspects related specifically to multisample 

textures: 

Â How are the multisample textures set up? 

Â How is geometry rendered into a multisample texture? 

Â How is multisample texture data copied to the back buffer? 

4.2.2.1 Setting up the multisample textures 

This demo takes the same approach to resource initialization as did the previous demo. The 

multisample textures are generated and assigned storage in the function responsible for rendering 

a single frame. This only happens when the function is called for the first time. 

The following code block is responsible for setting up the textures: 

 

for (n_texture = 0;      n_texture <  

n_multisample_textures    ++n_texture)  

{     uint32 _t n_texture_samples =  

n_max_color_texture_samples *  

n_textu re                   /  

(n_multisample_textures -  1);  

    if (n_texture _samples == 0)     {         /*  

Requesting zero samp les is not permitted */  

n_texture_samples = 1;     }  

    _textures[n_texture].n_s amples = n_texture_samples;  

    glGenTextures(1,  

&_te xtures[n_texture].texture);  

glBindTexture(GL_TEXTURE_2D _MULTISAMPLE, 

_textures[n_texture].texture);  

    glT exStorage2DMultisample(  

GL_TEXTURE_2D_MULTISAMPLE, 

n_texture_sam ples,         GL_RGBA8,  

re ndertarget_width,  

rendertarge t_height,         GL_FALSE); /*  

fixedsamplelocations */  

}  
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The demo uses a number of multisample textures, each holding a different number of samples. 

The total number of multisample textures used is defined by n_multisample_textures. 

For each multisample texture, start by working out the number of samples it will use, 

n_texture_samples. Do this in such a way that the first multisample texture will use a single 

sample, and the last one will use the maximum number permitted by the implementation 

(GL_MAX_COLOR_TEXTURE_SAMPLES) , with a reasonably regular progression in 

between. 

Then set up each multisample texture using the following steps: 

1. Generate a new texture object ID using glGenTextures 

2. Use glBindTexture to bind this ID to the GL_TEXTURE_2D_MULTISAMPLE texture 

target 

3. Allocate storage for the multisample texture using glTexStorage2DMultisample 

4.2.2.2 Using the multisample texture as a render target 

The demo renders the wireframe cube to a multisample texture attached as a color attachment of a 

frame buffer object created at initialization time. The multisample texture rendered to is switched 

every five seconds, using the pool of multisample textures covered earlier. 

Use the API function glFramebufferTexture2D to attach the new multisample texture, as follows: 

 

glFramebufferTexture2D(  

GL_DRAW_FRAMEBUFFER, 

    GL_COLOR_ATTACHMENT0, 

    GL_TEXTURE_2D_MULTISAMPLE, 

    _textures[n_texture_to_use].texture,  

    0); /* level */  

 

Since multisample textures do not support mipmaps, always use the base-level mipmap. 

4.2.2.3 Transferring multisample texture data to the back buffer 

To transfer the contents of the multisample texture to the back buffer of the default frame buffer, 

perform a frame buffer blit operation.This operation was introduced in OpenGL ES 3.0 and 

carries out a fast copy from the attachments of the read frame buffer to the corresponding 

attachments of the draw frame buffer. These copies bypass the fragment pipeline except that they 

are still subject to processing by the pixel ownership test, the scissor test and sRGB conversion. 

One of the things blits allows is to flatten the contents of a multisample attachment (such as a 

renderbuffer or a multisample texture) to a single-sample representation. The demo leverages this 

functionality to merge the multisample representation of the wireframe cube into a 

single-sampled version, delivered directly to the back buffer. The following code snippet 

performs this task: 

 

glBindFramebuffer(GL_DRAW _FRAMEBUFFER, 

0);  

glBlitFramebuffer(0 , /* srcX0 */  
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0, /* srcY0 */  

render target_width,  

rendert arget_height,  

0, /* d stX0 */                   0, /*  

dstY0 */  

ren dertarget_width,  

rendert arget_height,  

GL_COLOR_BUFFER_BIT,  

GL_NEAREST); /* filter */  

NOTE: If  wondering if it might be simpler just to render a textured quad directly to the back buffer, 

sampling the multisample texture in a fragment shader and storing the sampled value in an output 

variable. The problem is that there is only one texture sampling function in OpenGL ES Shader 

Language that allows the sampling of multisample textures, and this function only samples from a 

single sample at a time, specified by one of the input parameters to the function. Of course, a 

shader could sample all the available samples one after another and then calculate a weighted 

average. However, that would be much slower than the blit operation used in the demo. 

Tip 

glBlitFramebuffer can also be used to perform stretch blits. For further details, see the OpenGL 

ES 3.1 Reference Page for the function at http://www.khronos.org/opengles/sdk/docs/man3/ 

html/glBlitFramebuffer.xhtml. 

At this point, the single-sampled representation of the wireframe cube has made it into the back 

buffer. The only thing left to do is to swap the back buffer and front buffer, and the cube will then 

be made visible. 

4.2.3 Compute shaders and shader image load/store ï Demo 

 

Figure 4-3  Compute shaders and shader image load/store demo 

http://www.khronos.org/opengles/sdk/docs/man3/html/glBlitFramebuffer.xhtml
http://www.khronos.org/opengles/sdk/docs/man3/html/glBlitFramebuffer.xhtml































































































































































