QLIALCONVW

Qualcomm Technologies, Inc.

Qual c 6mdr eEhn@OpenGL ES
Developer Guide

80-NU141-1 B
May 1, 2015

FlexRender, Qualcomm Adreno and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc.

This technical data may be subject to U.S. and international export,re-e x port, or tansfer (filexporto)
Diversion contrary to U.S. and international law is strictly prohibited.

© 2014-2015 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

Questions or comments: https://support.cdmatech.com/

The cover image i s taldemof demet lop eflP dlya e at Auhlgoanm TeetoholoGiesnirce n t
The demo is running on a Qualcomm Snapdragon 810 using OpenGL ES 3.1. and depicts an immersive 3D environment, with near
photo-realistic rendering including dynamic lighting, reflections, and hardware tessellated objects.

Qualcomm, Adreno, Snapdragon, and FlexRender are trademarks of Qualcomm Incorporated, registered in the United States and
other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be
trademarks or registered trademarks of their respective owners.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

https://support.cdmatech.com/

Revision history

Revision Date Description
A Dec 2014 Initial release
B May 2015 Updated for Adreno 4xx to Chapter 1 and Chapter 3; added additional
compression information to Section 9.3

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Contents

O YT VT =Y

O o [=T To €] = U PP UPPP
1.1.1 Texture features
1.1.2 Visibility processingc.......
1.1.3 Shader support.......cccccceeeeevnnnneen.
1.1.4 Other supported features.............
1.1.5 Adreno APIs
1.20penGLES ...
1.2.1 OPEN GL ES VEISIONSetiieiiiite ettt ettt e ettt e e e e st e e e b e e s e e e e s nneee s
G I AN o To U1 Y o To | T SRRSO
1.3.1 OpenGL ES support on Android............ccccc.......
1.3.2 Android and OpenGL ES on Adreno

20penGL ES 2.0 With AQIEN0 ... oo

2.1 DEVEIOPMENE ENVIFOMMENTeiiiiiiiieeiitie e ettt et teee e et e e steeeeaatteeeaantaeeesaaeeeaasbeeeeanseeeesneeeeaasteeeeanneeeesnseeeenn
2.1.1 Development system
P A - T (0= S V1 (=] o DT PP PUPTR T

2.2 SEIUP INSIIUCTIONS ...eeiitiiee ittt ettt ettt e ettt e et e e e h bt e e et et e e e b e e e e s b et e e aabe e e e s ne e e e e bt e e e e annneeennnreee s
2.2.1 Android development on Windows

2.3 Walkthrough of sample applications
2.3.1 Create an ES 2.0 context on Android
2.3.2 Adreno GPU detection.........coccvveeriieeeniieeennee
2.3.3 Detect supported ES extensions
2.3.4 Implementation of Blinn-Phong lighting
2.3.5 Retrieving ES CONSIANT VAIUEScccoiiiiiiiiiieee ettt e e e

2.4 About the OpenGL ES impPIemMENtationcc.ooiiiiiiiiiiiee ittt e e e e e e e e eeas

2.5 Debug and profile..........cccccoviiiiniiiiieec e,
2.5.1 Debug an OpenGL ES application
2.5.2 Profile an OpenGL ES application

3 Using OpenGL ES 3.0 With AGIEN0 c..uueii i 44

3.1 New features iN OPENGL ES 3.0 . i ittt ettt e ettt e e s b e e s e bt e s anne e e s nreee s 44
3.1.1 Two-dimensional array textures...
3.1.2 Three-dimenSioNal tEXIUIESviiiiiiieiieee ettt e e e s
3.1.3 IMMUEADIE TEXIUIES ...t
3.1.4 Per-texture object LoD clamp
3.1.5 PCF fOr dePth tEXIUIES.oii ittt e e et e e e e e s e bbb e e e e e e e e annneeeeeas
3.1.6 New internal teXtUre fOrMALScooiiiiiiiie e
3.1.7 Transform feedback.....................
3.1.8 Instanced draw calls
3.1.9 Query 0Objectscccocveeeviiiienne
3.1.10 New vertex data types................
3.1.11 Vertex array objects...................
3.1.12 Uniform buffer objects................
3.1.13 Buffer subrange mapping
3.1.14 Multiple render target support....
3.1.15 Other NEW FEATUIESeiiiiiiie ittt e s e et e e s e e e
3.2 USING KEY FEALUINES ...ttt ettt e ettt e bt e e a b bt e e et et e e s bb e e e bt e e e anbn e e e snnreee s
3.2.1 USING 2D AITAY TEXIUIES ...eeeiiiiiitieieee e ettt e e e e ettt e e e e e e bttt e e e e e e s etbbeeeeaeeesannbbreeeaeeeannnnrnneeas

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Qual commE Adr eno Beveoper Gugle ES Contents

3.2.2 Using MUILIPIE reNAEr tArgeLSeiiie ettt e e e e e e e e e e e e e e nnneeeeeas 61
3.2.3 Using query objects.....................
3.2.4 Using vertex array objects
3.3 Walkthrough of sample appliCatioNSoeiiiiiiiiiiiici e e e e e e raee s
3.3.1 2D array textures i Demo
3.3.2 Rendering to 2D array texXtureS T DEIMOcocuviiiiiriieiiiee et 67
3.3.3 Interleaved vertex buffer ODJECtS T DEMOouviiiiiiiieeec e 70
3.4 About the OpenGL ES iMPIEMENTALIONcoiiiiiiiiiii ettt e e 72
3.4.1 GL CONSEANE VAIUESeeiiiiiiie ettt ettt bttt et ettt nne e 73

4 Using OpenGL ES 3.1 With AGIENO0ci it e e e e eeaeta e s e e e e e e eeeane 75

4.1 New features iN OPENGL ES 3.1... ... ittt e e e e e ettt e e e e e e e s satareeaeeeeaannaneeeaaeeaaannnes 75
4.1.1 AtOMIC COUNLEISccvveverierireeneene
4.1.2 Compute shadersccccceveeeeeiiiciiieeeee e,
4.1.3 ES shading language enhancements................
4.1.4 Images and memory barriers............ccoeevviieenns
4.1.5 Indirect draw CallS........cceevririeiiiiiiciieee e
4.1.6 Multisample teXIUreS........coocvvveiriiiieiieeeniiieees
4.1.7 Separate shader 0bjects..........ccccvveriieeeiniiieenns
4.1.8 Shader storage buffer objects...........cccccevvveeenns

4.2 Walkthrough of sample applicationsccccccoevveiniieene
4.2.1 Separate shader objects T Democc.cc...
4.2.2 Multisample textures I DEeMOcocvveeiiiiieiiiiiee e
4.2.3 Compute shaders and shader image load/store i Demo

4.3 About the OpenGL ES implementationoccceveiiiieeinieeee e
4.3.1 GL CONSLANT VAIUES ..o

5 Introducing Android EXtension PacK..........ccoooooiiiiiiii 100

LT A @ = T PP 100
L 1= oY (VT T Uo (=T £ RSP 100
5.3 TESSEIIAtION SNAUEISceiieiiiieiee et e ettt e e e e e ekt e e e e e e s e et br e e e e e e e asnneneeeas 101
5.4 Advanced DIENAING MOUES........ouiiiiiiii ettt s e e e sb e e e et e e s 102
BUS ASTC LDR ..ttt b e bbbt b bt nnr s 102

6 Designing OpenGL ES GUIAEIINESiiiiiiieecie e 103

8.1 OVEIVIEW ...ttt ettt ekttt e o1t e ekt e o st e 4o a b et e o4 b et e e 4R et e e oa ke e e e e bt e e e n e e e e e b e e e et e e e nne s 103
6.2 OpenGL ES as a Client-Server arChitECIUIe.couiiiiiiiieie et 103
6.3 OpenGL ES as a graphiCs PIPEIINEc..eueiiiiiie e 105
6.4 Designing a high-performance OpenGL ES appliCation............cccouiiiiiiiiiiiiiiiiiiieee e 107
6.4.1 Advanced lighting/SNAdOWINGcocuueiiiiiiie e 107
6.4.2 Avoid excessive clipping
6.4.3 Avoid UNNECESSArY Clear OPEIatiONSeiiiviiieiiieee ettt 108
6.4.4 Avoid unnecessary MakeCurrent CallS ..o 108
6.4.5 QTI SIMD/FPU co-processor usage
6.4.6 Implement Multiple threads............cooo e
6.4.7 Implement level-of-shading system
6.4.8 Minimize GL state changesccccevevvvvrennne
6.4.9 Minimize number of draw calls
6.4.10 Scaling resolutions
6.4.11 Avoid intra-frame resolves.........
6.4.12 Identify bottlenecks....................
6.4.13 BIUF €FfECT ...eeieiiiii e
6.4.14 Store equations in textureS/l00K-UP tEXIUMES.........uuiiiiieeiiiiiiiiee e e 113
6.4.15 Use front-to-back rendering
6.4.16 Use back faCe CUING.......uviiiiiiiie e
6.4.17 USE LOD IN EFfECLSeeiiiiiiii e
6.4.18 Use mipmapping
6.4.19 Use static and baked-in lighting

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

Qual commE Adr eno Beveoper Gugle ES Contents

6.4.20 USE 2D AITAY TEXEUIES ... s
6.4.21 Use vertex buffer objects
6.5 Handle synchronize and fluSh OPEIatioNSeieiiiiieiiieie e
6.5.1 Light- and heavyweight resolves
6.5.2 Getter callseeevviiiiiieeeeeiiie,
6.6 Manage resources with OpenGL ES
6.7 Efficient state managementccuve..
(SRS I = g 1= (o (V=T] o] o TP RPRO
6.9 OpenGL ES and MUITNIEATINGc.ouviiiiiiieiiii et e e
7 Comparing OpenGL ES Versions and Optional Featuresocuvviiiiieeerieeiiiiiciee e, 128
7.1 OpeNGL ES fEAtUrES DY VEISIONoociiiiiiiiiii ettt e e e et e e e e e s e e e e e e e s e e anraaeeas 128
7.2 Optional |angUAGE TEALUIESeiiii ittt e e e e ettt e e e e e s e neet e e e e e e s aanneeeeeaaeeeeannnseeeeas 134
7.2.1 ES eXteNSION ENUMEIALION.uiiiiiiiei et ii e e e e e e ettt e e e e e e e ettt eeaeaeaaannteeeeeaeeseannsseeeaaeeaaannees 135
7.2.2 Enabling extensions iN SNAOEIScviiiiiii e s 135
8 Understanding the Developer TOOIS ... 137
LS AN [(=T o To I o] 0] 1= TP
8.1.1 SCIUBDEI MOTEeeiiieieee it e e e e e e an e e
8.1.2 GrapNer MOUTEeeiiieiiiei ittt e ke e et e e s b e e ekt e e e e e s e e e e b e e s nnes
8.1.3 Shader analyzer mode
8.2 AUIEN0 SDK ...ttt bbbt bbbttt nr e e e s
8.2.1 Adreno texture compression and visualization t00l..............ccceeiiiiieiiii e 142
8.2.2 AAIEN0 tEXIUIE CONVEITETeeiiuiiiteiitiee ettt e ettt e e ettt e ettt e e et e e st e e e ekt e e e e e e ssb e e e ann e e e s nnnes 143
9 OPtIMIZING APPIICATIONS .. 147
LSS - To =T g i o 1SR 147
9.1.1 Compile and link during iNItAlIZATION..........ccoiiiiieiie e s 147
9.1.2 USE DUIIE-INS ..ttt e e e n e
9.1.3 Use the appropriate data type
9.1.4 REAUCE TYPE CASHING ...veeeiirieeeiitie ettt ettt etttk e ettt e e st e e ek e e et e e ssb e e e e anne e e e nnnes
9.1.5 PACK SCAIAI CONSIANTS.......utiiiiiiiiie ittt s et e e s
9.1.6 Keep shader length reasonable
9.1.7 Sample textures in an effiCieNt WAYuueiiiiiiiiiiie e e e
9.1.8 Threads in flight/dynamic branChing ...
9.1.9 Pack shader interpolators............cccceevvviivieeennn.
9.1.10 Minimize usage of shader GPRs.
9.1.11 Minimize shader instruction count
9.1.12 Avoid uber-shaderscccoeceveiriieeeiniieene
9.1.13 Avoid math on shader constantsccccveee.
9.1.14 Avoid discarding pixels in the fragment shader
9.1.15 Avoid modifying depth in fragment Shaders..............ooooiiiiiiiii e
9.1.16 Avoid texture fetches in vertex shaders
9.1.17 Bre@k UP drawW CallSccoooiiiiiiieieee ettt et e e e e e e e e e e e e e aneee
9.1.18 Use medium precision Where POSSIDIEoooiiiiiiiiiii e
9.1.19 Favor vertex shader calculations over fragment shader calculations
9.1.20 Measure, test, and Verify reSUItScuveveiieiiiiiii e,
9.1.21 Prefer uniform buffers over shader storage buffers
9.1.22 Invalidate frame buffer contents as early as possible
9.1.23 Optimize vertex buffer object updatesc.cccooiiiiieeeennnnns
9.1.24 Eliminate subpixel triangles during tessellation
9.1.25 Do back-face culling during tessellation...............ccccccceeeeennneee
9.1.26 Disable tessellation whenever it is not needed.......................
9.2 OptiMize VErteX PrOCESSING .. .ccciureeeiirieerireeeeitree ettt e st e e e s e
9.2.1 Use interleaved, compressed VertiCes..........cccccvvviiiiiieeeeennnnnes
9.2.2 USE Z-ONIY FENAEBTING -..ttteeeee ettt ettt ettt e e e e e ettt e e e e e e e abbe e e e e e e e s e annsbbeeeaaeeaaannees
9.2.3 Consider geoMEtry INSANCINGeeiiieiiiiuiiieiiee et e e e e e e e e e e e e s asabeeeeaaeesaanebeeeeaeesaannnnes
9.2.4 Select the best VerteX fOrMALo e

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

Qual commE Adr eno Beveoper Gugle ES Contents

9.2.5 Use indirect indexed draw calls
9.3 Texture compression strategies.....................
9.3.1 Diffuse texture tests............c........
9.3.2 Normal texture tests
9.4 BandWidth OPLIMIZATIONeeiiiiiiie ettt e s e e e s b e e s asne e e e snn e e e ebre e e s nnees
9.5 Depth range OPtIMIZATIONcc.vviiiiee et e e e e e e e s s et e e e e e e s et ba e e e e e e e s easabraeeeeeesennnreeeeas
9.6 Other OPLIMIZALIONSuviiiii e e e e e e e e e s et et e e e e e e s e tb b b e e e e eeesaasaaraeeeeeesaassnraeeeas

E N =Yg YT o F=To IR STE] o o To] o SRR PP PPPPPPPPPPPPPPPN 169

] Lo =TT T S 170

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 4-1
Figure 4-2
Figure 4-3
Figure 6-1
Figure 6-2
Figure 6-3
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8

Figure 9-9

Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13

Video texture example

(010 o TR 42T o] o] 1o [P PPPPPPRPN

T I (= (LU P PP PP P PPPPPPPPPPIN

= 14 YA (=1 =11 o] o [PR UU T SPPPRRR

Deferred style of rendering with AAreno 3XX and 4Xcccuvviiiiie i e a e 15
Unified Shader arChitECIUIeeiiiie ettt e e e e e sttt e e e e e e s enaae e e e e e e e aennneeeeeas 16
Flexibility in shader resources i Unified shader architeCturecoocoveieiiiiiiiiiiiicce e 16
Y S Y PR SPPRPI 17
2D AITAY TEXEUIE ...ttt e 45
BT DT = Y (= (1 | = 46
TEXEUIE LOD .. e 48
Percentage-closer filtering algorithm.............oooiiiiii e e e 49
Percentage-closer filtering from the Adreno SDKooiiiiiiiiiiiiiiiie e 50
SiNgle INSTANCE raW CAUlo.eiiee ettt e e st e e e snre e e e e e e aaes 54
RV =T (o) o101 1=T A3 (o PRSI 72
Separate shader ODJECES EIMOouiiiiiiiii et e e et b e e st e e e s nreeeaasnreeeaaes 84
MUItISAMPIE TEXLUIES EBIMOeiiiiiiie ettt ettt e et e e ettt e e e esb e e e sttt e e sbbeeeaanbeeesanneeaesnneeeean 88
Compute shaders and shader image 10ad/StOre eMOcooiiiiiiiiiiiiiiieee e e e 91
Geometry design t0 aVOid CPPINGeeeiirieeeiiii ettt e e e e s b e s e e nnreee s 108
INEFA-TTAME TESOIVES ...ttt e e e ettt e e st e e e ea bt e e e e bt e e e e asbeeeeenteeeesnaeeeearbeeeeane 111
Identifying application DOtHENECKS IN GPUcooiiiiiiiiie it 112
YN =T aTo I o] o) 1= PR 138
Adreno profiler: SCrUDDEr MOTE ..o 139
Adreno profiler: grapher MOGEooiiie et e et e e st e e e snt e e e snneeeeenneeas 140
Adreno profiler: shader analyZEer MOcoooiuuiiiiiiie e e e e e 141
Yo [T g T (=) LU= 30 (oo | PR OOTPPRPR 142
Geometry instancing for drawing DAITEISoooii i e 155
Diffuse texture USed fOr the tEST........cooiiii e 158
ATC compression result for GL_ATC_RGB_AMDoccuiiiiiiiaiiiiieee ettt ebaeee e e 159
Difference between noncompressed and ATC compressed versions for GL_ATC_RGB_AMD.............. 159
ETC1 compression result for GL_ETC1_RGB8_OESccoiiiiiiiiiiieiiieee et 160
Difference between noncompressed and ETC1-compressed versions for GL_ETC1_RGB8_OES. 160
ETC2 compression result for GL_COMPRESSED_RGB8_ETC2ccccceiiiiiiiiiiiiie et 161

Difference between noncompressed and ETC2-compressed versions for

GL_COMPRESSED _RGBB8_ETC2iiiitiiteiiitite e ettt e siieaeasiteeesstataessateaeaasteeesansssaeaassaaeassseeeeassseessssaaeeastseesansseeessnsees 161
Normal texture USEA fOr the tOST......coi ettt e e e e e st e e e e e e s e nneneeeeeaeeean 162

ATC compression result for GL_ATC_RGB_AMDcccouiiiiiiiiie et 163

Difference between noncompressed and ATC-compressed versions for GL_ATC_RGB_AMD............ 163

ETC1 compression result for GL_ETCL1_RGB8 _OEScooiuiiiiiiiiiiiiiiiieee et 164

Difference between noncompressed and ETC1-compressed versions for GL_ETC1_RGB8_OES 164

ETC2 compression result for GL_COMPRESSED_RGBB8_ETC2cccoccuiiiiiiiiieiiieee e 165

Figure 9-14
Figure 9-15

Difference between noncompressed and ETC2-compressed versions for

GL_COMPRESSED_RGBB_ETC2ooeoiveeeeeeeeeeeeeeeeeeeeee e eeee e eeeee s e ee e ee et eee e ee e e e e eeee e 165

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Tables

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 6-1
Table 6-2
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 8-1
Table 9-1

Adreno, OpenGL ES, and Android versions
OpenGL versions required by the emulator
Getter functions in OPenGL ES..........oooiiiiiiiieiiiiiieieeee e
Adreno GL constant values for OpenGL ES 2.0 contexts
Internal texture formats supported in ES 3.0....
GL_MAX constant values i OPENGL ES 3.0c.uuiiiiiiiieiiiie ettt e e
Other GL constant values T OPENGL ES 3.0uuiiiiiiii ettt a e e e s saaaaa e e e e e e
GL_MAX constant values i OPENGL ES 3.1ooiiiiiiiiiiiiee ettt
Other GL constant values T OPENGL ES 3.1uiiiiiiii ittt e e e a e e e s sabaaa e e e e e e
State-modifying calls iN OPENGL ES.......coo it
ObjJeCt tyPeS IN OPENGL ES ..ot e e e e e e e st e e e e e e e s st e s e e e e e e setbraaeeaaeeaan
FEALUIe SEE COMPAIISONcitiiiiiieiti ittt ettt ekttt b et s bt esbr e e sb bt e sar e e s b bt e sen e e sb e e sineenbneenanee e
Supported optional OPEeNGL ES 1.X EXIENSIONScoiutiieiiiiieeatiit et e et e e e anre e nnnees
OpenGL ES 2.0 extensions supported DY AGrEN0oouieiiiiiiieiiiie et
Supported optional OPeNGL ES 3.X EXIENSIONScoiuuiieiiiiieeiiiit et e s e s
Texture converter SUPPOIEA FOMMALScoveiiiieiiiiiii ettt sb e
Vertex data format support in AAren0 arChit@CIUIE...........ieiiiiiie e e e

Table A-1 Keycode mappings for LOGItECN F710ooiiiiiiiiiie ettt e e e e et e e e e e s s snebreeeaeeeeennnens

Equations

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

1 Overview

This document is a guide for developing and optimifdpgnGL ESapplications forAndroid on
platforms containingQualcomn? AdrencE GPUs.OpenGL ESs a subset of th@penGLAPI
for developing 2D and 3D graphics, designed for use on embedded systemsypibally are
constrained by processor capability, memory limitation, and power consumption limits.

The document introdusé¢he basics 0OpenGL ESlevelopment with Adreno, detailing how to
set up a development environment, anavideswalkthroughs of saple applications. It also
describs how to use debugging and profiling tools.

Detailed descriptions of the Adremspecific implementations @penGL ESAPIs are provided,
along with an introduction to the Android Extension P&EP), and the developer ats
provided by the Adreno SDK

Good design practice wiBpenGL ESs discussed, followed by advice on how to optimize
applications specifically for the Adreno hardware.

This document is intended for application developers, with a good working knowledge o
modern 3D graphics API such @penGL ESOpenGlL, or Microsoft Direct3D It is not intended
as a primer for 3D graphics.

1.1 Adreno GPU

The Adreno GPU is built in as part of theiallone design ofhe Qualcomn? Snapdragoi

processors. Accelerating the rendering of complex geometries allows the processors to meet the
level of performance required by the games, user intetfandsveb technologies present in

mobile devicesoday

The Adreno GPU is builurposelyfor mobile APIs and mobile device constraints, with an
emphasis on performance and efficient power use.

The original Adreno 130 variaprovides support only folOpenGL ES 1.1The Adreno 2xx
series and onward supp®@penGL ES 2.0TheAdreno3xx seriesadds suppot for OpenGL ES
3.0andOpenCL Adreno 4x adds support fobpenGL ES 3.4and theAEP.

This section outlingthe various technologies and subsystems provided by the Adreno GPU to
support the graphics developer. Best practice for using ihdisgeussedn later chapters.

1 Product is based on a published Khronos specification and is expected to pass the Khronos
Conformance Testing Process when available. Current conformance status can be found at
www.khronos.org/conformance.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

Qual commE Adr eno Beveoper Gugle ES Overview

1.1.1 Texture features

Multiple textures

Multiple texturingor multitexturingis the use of more than one texture at a time jpoiygon.

Adreno &x supports up to 32 total textures in a single render pass, meaning up to 16 textures in
the fragnent shader and up to 16 textures at a time for the vertex shader. Effective use of multiple
textures reduceoverdraw significantly, saweAlgorithmic Logic Unit (ALU) cost for fragment

shaders, and ava@dinnecessary vertex transforms.

To use multiplaextures in applicatias refer to themultitexturesample in the Adreno SDK
OpenGL ESutorials

Video textures

More games and graphics applicatibtodayrequire video textures, which consist of moving
images that are streamed in riédade from a videoife. Adreno GPUs support video textures.

Video textures are a standard API featurAmdroid today (Honeycomb or later versionSge
the Android documentation for further details on surface textates
http://developer.android.com/reference/android/graphics/SurfaceTexture.html

Apart from using the standard Android API as suggesteohapplication requires video
textures, the standaf@penGL ESextensiorcanalso be usedSee
http://www.khronos.org/registry/gles/ extensions/OES/OES_EGL_image.txt

Figure 1-1 Video texture example

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

http://developer.android.com/reference/android/graphics/SurfaceTexture.html
http://www.khronos.org/registry/gles/%20extensions/OES/OES_EGL_image.txt

Qual commE Adr eno Beveoper Gugle E S Overview

Texture compression

Texture compression can significantly improve the performance and load time of graphics
applications since it reduces texture memory and bus bandwidth use. Compressed textures can be
created using the Adreno Texture Compresaiwh Visualization Tool and subsequently used by
anOpenGL ESapplication.

Important compression texture formats supported by Adreno 3xx are:
A ATC 1 Proprietary Adreno texture compression format (for RGB and RGBA)
A ETCi StandardOpenGL ES 2.@exturecompresion format (for RGB)

A ETC21 Texturecompression format that is supported in@®@enGL ES 3.@\PI (for R, RG,
RGB, and RGBA)

Adreno 4x adds support for ASTC LDR compression, which is made available through the
Android Extension Pack.

To learn more abouhe use of texture compressigecthe Compressed Textutatorial in the
Adreno SDK

Floating point textures

Adreno 2xx 3xx, andonward support the same texturing features, including:

A Texturing and linear filtering dFP16textures via th&L_OES _texture_half_floand
GL_OES texture_half float_lineaxtension

A Texturing fromFP32textures viegGL _OES texture float

Through theOpenGL ES 3.@&\PI, Adreno 3xxandonward also includes rendering support for
FP16(full support) and=P32(no blendimg).

Cube mapping with seamless edges

Cube mapping is a fast and inexpensive way of creating advanced graphic léféects
environment mapping. Cube mapping takes a tneensional texture coordinate and returns a
texel from a given cube map (similar to a sky box).

Adreno 3xxandonward supports seamlesdge support for cube map texture sampling.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Qual commE Adr eno Beveoper Gugle ES Overview

Figure 1-2 Cube mapping

3D textures

In addition to 2D textures and cube maps, there is a ra@phGL ES 2.@xtension for 3D
textures calledsL._OES _texture_3DThis extensiomllows 3D textureinitialization and uséor
volumetric rendering purposeBhisis acore functionalitystarting withOpenGL ES 3.0

Figure 1-3 3D texture

Large texture size

Adreno 330 supports texture sizes up to 8192x8192x&1&2ending on memory aNability,
Adreno 420 can address textures obhatson up to 16384x16384x16384

SRGB textures and render targets

sRGB is a standard RGB color space created cooperativelgwletiPackardand Microsoft in
1996 for use on monitors, printers, and the Inteimartphone and tablet displaysiayalso
assume sRGB (nonlinear) color spabe get the best viewing experience with correct colors, it
is important that the color space for rendggéts and textures matches the color space for the
display, which is SRGB. Unfortunatel@penGL ESassumes linear or RGB color space by

80-NU141-1B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

Qual commE Adr eno Beveoper Gugle ES Overview

default As Adreno 3xxand 4x supporsRGB color space for render targets as well as textures, it
is possible to ensara correct color viewing experience.

PCF for depth textures

Adreno 3xxand 4x havénardware support for thepenGL ES 3.@eature ofPercentage&loser
Filtering (PCF) A hardware bilinear sample is fetched into the shadow map texture, which
alleviates thaliasing problems that can be seen with shadow mapping itimeahpplications.

1.1.2 Visibility processing

Early Z rejection

Early Z rejection provides a fast occlusion methdith the rejection of unwanted render passes
for objects that are not visible (lddn) from the view position. Adreno 3axd 4x can reject
occluded pixels at up #x the drawn pixel fill rate.

Figurel-4 shows a color buffer represented as a grid, and each block represented as a pixel. The
rendered pixel area on this grid is colored black. THheiZer value for these rendered black

pixels is 1. If trying to render a new primitive onto the same pixelseoéxisting color buffer

that has the Duffer value of 2 (as shown in the second grid with green blocks), the conflicting
pixels in this new primitive will be rejected as shown in the third grid representing the final color
buffer. Adreno 3x»xand 4xcan eject occluded pixels at up to four times the drawn pixel fill rate.

+

Color buffer with existing New pixels to render
rendered pixels with Z value 1 with Z value 2

Highlighted conflicting Pixels are rejected
by Early Z rejection feature saving efforts
to coloring conflicting pixels

Figure 1-4 Early Z rejection

To get maximum benefit from this featuf@T| recommenddrawinga scene with primitives
sorted out from fronto-back; i.e., neato-far. This ensures that thergject rate is higher for the
far primitives, which is usefdbr applications that have higtepth complexity.

FlexRenderE (hybrid deferred and direct rendering mode)

QTl introduced its new FlexRerdsolution as part of Adrenxand 4x FlexRender refers to
theability of theGPU to switch between indirect rendering (binning or deferred rendering) and
direct rendering to the frame buffer.

There are advantagasboth the direct and defedeendering modes. The Adrenw &nd 4x
GPUsweredesigned to maximize performance by switching between the two modes in a

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Qual commE Adr eno Beveoper Gugle ES Overview

dynamic fashionThis works by the GPU analyzing the rendering for a given render target and
selectinghe mode automatically.

The deferred mode rendering mechanism of the Adreno GPU uskadéd rendering and

implements a binning approach is used to create bins of primitives are processed in each tile. The
first pass associates each primitive with aoddBinIDs and bacKacing information. This pass is

done once per frame. In the second pass, these BinIDs are used to trivially reject the primitives
that fall outside the current bin being rendered and perform earlyfbeglkculling.

The second passns once per bin. Each bin is rendered to the GMEM. Then, each bin is resolved
to the render surface in memofhe deferred mode rendering mechanism is shown in further
detail inFigure1-5.

Binning Pass Rendering Pass Resolve Pass

Setup Visibility Stream based on Write color and z for all pixels in the current bin to internal
Frame Buffer size the “GMEM" tile buffer (e.g. GMEM = 512 KB for 8960)

T3

Z-test, Alpha-test,
Fragment Shading, Blending of layers

1

Transform Primitive Positions ’

Primitives

| Rasterization of Primitives
t Write final color values from
GPU hw creates GMEM tile to the frame
Visibility Streams* Execute draw calls per bin using bufferin system memory

currentbin’s Visibility Stream

1 1

Render Render
FirstBin = | NextBin

" i If last bin in the current
| Rendering Pass Initiated frame, the driver swaps

' buffers, and starts rendering
the first bin from next frame

Binning

Pass for
next frame RLE of Visibility Streams are written to system memory

Figure 1-5 Deferred style of rendering with Adreno 3xx and 4x

1.1.3 Shader support

Unified shader architecture

All Adreno GPUs support the Unifiéshader Model, which allows for use of a consistent
instruction set across all shader types (vertex and fragment shaders). In hardware terms, Adreno
GPUs have computational unitsg.,ALUs, that support both fragment and vertex shaders.

Adreno 4«x uses ahared resource architecture that allows the same ALU and fetch resources to
be shared by the vertex shaders, pixel or fragment shadergeneral purpose processinge
shader processing is done within the unified shader architectisieowsin Figure1-6.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

Qual commE Adr eno Beveoper Gugle E S Overview

Vertex Pixel

U ¥

| Scheduling/Balancing

|
I S S |

ALU

(Arithmetic (Arithmetic (Arithmetic
Logic Unit) Logic Unit) Logic Unit)

(Arithmetic
Logic Unit)

Figure 1-6 Unified shader architecture

Figure1-6 shows that vertices and pixels are processed in groups of four as a vector, or a thread.
When a thread stalls, tishader ALUs can be reassigned.

In unified shader architecture, theras separate hardware for the vertex and fragment shaders,
asshownin Figure1-7. This allows for geater flexibility of pixel and/ertex load balaces.

Adreno GPU s Other GPU Architectures

Pixels

t

Pixels Unusable

Cycles

Unusable
Cycles
-+ o

ADRENO Auto-Balancing Independent Vertex
Unified Shader (ALUs shared) & Fragment Shader (ALUs not shared)

Max Pixel
Processing

Max Processing Power

Max Vertex
Processing
Power

Figure 1-7 Flexibility in shader resources i Unified shader architecture

The Adreno #x shader architecture is also multithreaded, if a fragment shader execution
stallsdue to a texture fetch, the execution is given to another shader. Multiple shaders are
accumulated as long as there is room in the hardware.

No special steps are requireduse theunified shader architecture. The Adreno GPU intelligently
makes the mogfficient use of the shader resources depending on scene composition.

Scalar architecture

Adreno 4&x has a scalar component architectdiige smallest component Adrenex4can
support natively is a scalar component. This results in more effléedtvare resouragse for
processing scalar componerdaadit does not waste a full vector component to process the scalar.

Thescalar architecture of Adrenaxdcan be twice as powefficient and deliver twice the
performance for processing a fragmedmder that uses mediupnecision floating point

80-NU141-1B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

Qual commE Adr eno Beveoper Gugle ES Overview

(mediump, compared to other mobile GPUs today, which use vector architecturkdfemosx,
mediumpis a 16-bit floating point anchighpis a 32-bit floating point.

1.1.4 Other supported features

Index types

A geometry mesh can be represented by two separate arrays, one array holding the vertices, and
another holding sets of three indices into that array, which together define a triangle.

Adreno 4x natively supports-it, 16-bit, and 32bit index types. Most mobile applications use
16-bit indices.

Multisample anti-aliasing (MSAA)

Anti-aliasing is an important technique for improving the quality of generated images. It reduces
the visual artifactsfaendering into discrete pixels.

Among the various techniques for reducing aliasing effects, multisamplinficierefy

supported by Adrenox4 Multisampling divides every pixel into a set of samples, each of which

i s treat epi kX é k erastnizdiionnEgdh sample has its own color, depth, and

stencil value. And those values are preserved until the image is ready for display. When it is time
to compose the final image, the samples are resolvethimtinal pixel color. Adrenoxk

suppors the use of two or four samples per pixel.

XK

X X

Pixel with sample postions

Resulting color

L+
A

Figure 1-8 MSAA

Vertex texture access or vertex texture fetch

With the advantage of having shared resources to process vertex and fragment shaders, in the
AdrenoGPUs the vertex shader has direct access to the texture ktastsgmple to implement
vertex texture algorithms for function definitions, displacement maps, or ligbtregof-detail

(LoD) systems on Adreno GPUs. Vertex texture displacementdshamnced technique that is

used to render realistic water in games on a desktofoandnsoles. The saneannow be
implemented irapplications running on Adreno GPUs.

The following is an example of how to do a tese fetch in the vertex shader:

llllIverte X shader
attribute vec4 position;

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

Qual commE Adr eno Beveoper Gugle ES Overview

attribute vec2 texCoord;

uniform sampler2D tex;

void main() {

float offset = texture2D(tex, texCoord).x;

é. .

gl _Position = vecd4(é.);

}

1.1.5 Adreno APIs

Adreno 4«x supports Khronos standard APIs including:
A OpenGL ES 1.Xfixed function pipeline)

A OpenGL ES 2.@programmable shader pipeline)

A OpenGL ES 3.0

A EGL

A OpenCL 1.1e

Adreno 4xx additionally supports:

A OpenGL ES 3.Imost recent version of this API)

A AEP

A OpenCL 1.2full

Along with theOpenGL ESAPIs, the extensions to these APIs are also supported.

In addition to the&Khronos standard APIs, Adrensxdsupports MicrosofDirect3D 11API with
Feature Level 9 3. Adreno 4xx suppdbisect3D 11with Feature Level 11 2. Discussion of
these APIs is ostde the scope of this document.

1.2 OpenGL ES

OpenGL Eds a royaltyfree, crosglatform API for fulHfunction 2D and 3D graphics on
embedded systems. It consists of vadfineddesktopOpenGLsubsets, creating a flexible and
powerful lowlevel interface beveen software and graphics acceleration.

1.2.1 Open GL ES versions

The following sections outline the different version©penGL EShat are availabland how
they relate t@penGL They also detail the main functional differences between them and
optimizatians that can be utilized by develoger

OpenGL ES 1.x

Defined relative to th®penGL 1.5specificationOpenGL ES 1.xs designed for fixed function
hardware, and emphasizes hardware acceleration of the API. It provides enhanced functionality,
improved imag quality and optimizations to increase performance while reducing memory
bandwidth usage to save power.

For more about the APIs and specificatipseehttps://www.khronos.org/opengles/1_X/

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

https://www.khronos.org/opengles/1_X/

Qual commE Adr eno Beveoper Gugle ES Overview

OpenGL ES 2.x

Defined relative to th©penGL 2.CspecificationOpenGL ES 2.xs designed for programmable
hardware and focuses on a programmable 3D graphics pipeline, providing the ability to create
shader and program objects and to write vertex and fragmeiéish It does not support the

fixed function transformation and fragment pipelin€OglenGL ES 1.x

For moreinformation seehttps://www.khronos.org/api/opengles/2_X

OpenGL ES 3.x

OpenGL ES 3.xs backwards compatible with 2.x and llpprovides enhancements to the
rendering pipeline to enable acceleration of advanced visual effects, a new version of the
OpenGL ES Shading Languagsmdanenhanced texturing functionaljtgmong other things.

For acomplete description of the APdeehttps://www.khronos.org/api/opengles/3._X

1.3 About Android

Android is a mobile operating system based on the Linux kantkiscurrently developed by
Googk.

1.3.1 OpenGL ES support on Android
Android supports several versions of thpenGL ESAPI.
A OpenGL ES 1.@nd1.17 This API specification is supported Bydroid 1.0and higher.

A OpenGL ES 2.0 This API specification is supported Bydroid 2.2(API level 8)and
higher.

A OpenGL ES 3.0 This API specification is supported Bydroid 4.3(API level 18) and
higher.

A OpenGL ES 3.1 This API specifications supported byAndroid 5.0 (Lollipop).

1.3.2 Android and OpenGL ES on Adreno

The Adreno GPWersionssupport the use of different levels of the OpenGLsgification For
each level of th®©penGL ESspecification, there is also a minimum version of the Android OS
required e.g.,to useOpenGL ES 3.0t requiresat least Adreno 3xx and at ledstdroid 4.3

(Jelly Bean)Table1-1 lists thesgequiremert.

Table 1-1 Adreno, OpenGL ES, and Android versions

Adreno ver OpenGL ES ver supported Android ver required
Adreno 1xx 11 Android 1.0 (Alpha)

Adreno 2xx 2.0 Android 2.2 (Froyo)

Adreno 3xx 3.0 Android 4.3 (Jelly Bean)
Adreno 4xx 3.1 Android 5.0 (Lollipop)

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

https://www.khronos.org/api/opengles/2_X
https://www.khronos.org/api/opengles/3_X

2 OpenGL ES 2.0 with Adreno

2.1 Development environment

Before develojmg OpenGL ESapplicationsit is hecessary teet up a suitable development
environmentA development systeis neededyhich can be based aiindows Linux, or OSX.
There must also betarget system for testirlge application For the purposes of this document,
that means an Android device or emulator.

2.1.1 Development system

There are a number sbftwarepieces that are required to create theetiigppment toolchain. The
required software packages aefollows.

Adreno SDK

TheAdreno SDKoffers anOpenGL ESmulator, demos and tutorials, andSIDK browsetthat
allows the running, buildingand deploying of these samples to the device with aesirligk

note: TheOpenGL ESsmulator relies on the implementation of deskBmenGLon the host system,
as shown imable2-1.

Table 2-1 OpenGL versions required by the emulator

OpenGL ES ver Desktop OpenGL ver needed
OpenGL ES 2.0 OpenGL 2.0
OpenGL ES 3.0 OpenGL 3.3
OpenGL ES 3.1 OpenGL 4.3

Tip
Be sureto update tdhe latesgraphics driverersions orthe development system.

Android developer tools

Whendevelopng using Eclipsedownload and instal\ndroid DeveloperTools ADT), which is
a plugin for Eclipsethatprovides a full suite oAndroid-specific tools, including XML editors,
GUI builders,ard debugging and profiling tools for botheemulator andhe device.

note: ADT comes in a bundignatincludesthe coreAndroid SDK TheAndroid SDKprovides the API
libraries and developer tools necessary to build, test, and debug applications for Ahéit.
is not installedthe standalone version of tAedroid SDKis necessarinstead.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

20

Qual commE Adr e nES Bevaoper Guile OpenGL ES 2.0 with Adreno

Android NDK

TheAndroid NDK is a toolset that allowmsodeimplemenationusing native languages, such as C
and C++. Some of thadreno SDKsamples are developed in thiammer, so it is necessary to
install theNDK to take advantage of these samples.

Apache Ant

Apache Antis a toolset used to aid in the building of software packages, most usuatlyamch
It is used inAndroidto create APK packages, and is needed gopany generaindroid
development environment

Java development kit

TheJavaDevelopmenKit (JDK) is a prerequisite for runningnt and many other development
tools.

2.1.2 Target system

When deploying and testiranapplication, there are three possibiliteessdiscussed here

Adreno SDK emulator

If there is navailable hardware, dkit is necessaryo test against a pure implementation of the
OpenGL ESAPI, then theAdreno SDKemulator, along with the associajadfiler tool, allows
for debugying and optimiationof applications quickly and without large hardware outlay costs.

Existing Adreno-based consumer devices

The Adreno GPU isisal in a broad range of tablet and mobile phone devices from major
manufacturers. There are too many devices ttdiee, butit is notdifficult to find a modern
Android device running any given version of the Adreno GPU.

QTI Snapdragon MDP

To gain access to the very latest Adreno GPUs and the most advanced multimedia techihologies,
is necessarto go beyond the mmal mobile phone and tablet devices available in the consumer
marketplace.

QTI provides a mobile development boadgsignedpecifically to aid development @fpenGL
ESapplications on Adreno. THagnapdragon Mobile Development PlatfoflDP) offers both
mobile and tablet options, and provides early access to gkifbrmanceindroid platforms for
development, testingnd software optimizatio.he development devices contain preinstalled
development and optimization softwaes., the Snapdragomperfomance visualizewhich
allows performance monitoring, profilingnd debuggingThis helpgo easily locate and resolve
performance bottlenecks.

For moreinformationabout the currently availabMDP devices seehttps://
developer.qualcomm.com/mobitkevelopment/developmedevices/snapdragemobile-
developmeniplatform-mdp.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-de

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

2.2 Setup instructions

This sectiorlists thesteps needed to install the software toolchain for buil@pgnGL ES
applications for AndroidThis material also provides information and instructionb@n to set
up a working toolchain, which can lead to theélding, installation,and ruming of anysample
application in the Adreno SDK.

2.2.1 Android development on Windows

Theseinstructions cover the setup of a development environment on a Windows x64
devebpment system with an Android target device. If a different platiemecessarfor the
development system, the details of the installation may differ.

Install the Adreno SDK together with a number of Android development packages. These
instructions aimo geta development projeaip and runningn the shortesime possible.

2.2.1.1 Set up the Adreno SDK

1. Download theAdreno SDKfrom theQualcomm Developer Networkebsiteat
https:/Heveloper.qualcomm.coddwnload/

Extract allfiles to a folder, e.gC:\AdrenoSDK_Windows

Follow the instructions in the extractRfEADME.txt file. Make sure the packages specified
are installed before continuing

4. ExecuteAdrenoSDK Installer.exeChoose a folder name suchfadrenoSDKin which to
install the SDK

5. RunAdrenoSDKBIn\Browser.exdo launch the SDK browsedse this to navigate to the
SDK documentation and sample applications.

2.2.1.2 ADT

1. Download the Windows 68it ADT bundle from the Android Developers site
https://developer.android.com/sdk/index.html

2. Extract all files intathe Android directory e.g, C:\Androidiadtbundlewindows
x86_6420140702

NOTE: Choose the latest bundle when downlogdThe datedrersion number will likely be
different.

3. Add the following to theNindowsPATH environmenvariable:
a. C:)\Androidadtbundlewindowsx86_6420140702sdKtools
b. C:)\Androidadtbundlewindowsx86 6420140702sdRplatformtools

2.2.1.3 Android NDK

1. Download théNindows64-bit NDK from the Android Developers site
http://developer.android.coibls/sdk/ndk/index.html

2. Extract all filesinto the Android directory e.g, C:\Android\androidndk-r9b.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

22

https://developer.qualcomm.com/download/
https://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

Qual commE

Adr en o Bevéloper GUBle E S OpenGL ES 2.0 with Adreno

NOTE:

Add the environment variablANDROID_NDK_ROOT=C\Androidiandroidndk-r9bto the
Windowssystem

This path may change depending on the latest version number of the NDK

4. Add this to theWindowsPATH environmentariable%ANDROID_NDK_ROOT%
2.2.1.4JDK
1. Download theNindows x64O0racleJDK from the Oracle Technology Network sie

http://www.oracle.com/technetwork/java/javase/downloads/
Install the JDK tdC:\Program Filegava

3. Add this environmentariable tothe WindowssystemJAVA_HOME=C\Program

NOTE:

4.

FilesJavajdk1.8.0_05
This path may change depending on the latest version number of the JDK

Add this entry tahe PATH variable%JAVA_ _HOME%bin.

2.2.1.5 Ant

NOTE:

4.

DownloadAnt from the Apache Ant websitat http://ant.apache.org/bindownload.cgi
Extract all files toC:\Ant\apacheant1.9.4
Add the environment variablANT_HOME=C\Ant\apacheant1.9.4

This path may change depending on the latest version numAat.of

Add this entry tahe PATH variable% ANT_HOME%bin.

2.2.1.6 Build and run sample application

1.

o o b~ w

~

Open a command prompt.

Navigate to thé\ndroid\jni directory in one of thé&dreno SDK sample applicationsge.
cd\AdrenoSDHKDevelopmenSample¥OpenGLES3DepthOfFieldAndroidyni.

Run thendk-build command
Navigate up one level to tiendroid directory €d .).
RunthelnstallAssets.bagcript to copythe sample assets.

Remaning in theAndroid directory, use thé&ndroidcommand to update the project famt
Android update projeep -t androidXX, whereandroid XX is theAndroid SDK version
installed e.g, android20.

UseAnt to createdhe APK for the sample applicaticentdebugor ant release
Install the sample application @me connected devige.e.,ant instaléd or ant install

Run the application otihedevice

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

http://www.oracle.com/technetwork/java/javase/downloads/
http://ant.apache.org/bindownload.cgi

Qual commE Adr eno Beveoper Gugle E S OpenGL ES 2.0 with Adreno

2.3 Walkthrough of sample applications

This sectiordiscussesome key tasks that magfacal in the development of adpenGL ES
application. In particular

A How to set up a®@penGL ESontext under Android

A How to detect the Adreno GPU and determine its version

A How to detect availabl®penGL ESextensions

A How to implement basic Pho+igjinn lighting

A How to retrieve the values @penGL ESonstants fotherendering context

This section illustrates these poibtsreferencinghe source code of one of the example
applications included with the Adreno SDK calladhting. This sectioralsoillustratesthe other
pointswith code shippets.

2.3.1 Create an ES 2.0 context on Android

NOTE:

When developing for thAndroid platform, anOpenGL EScontext must be created using the
EGL API. In the case of the sample applications provided i\treno SDK this is done by
common framework codevhich is shared across the various sample applicafltnisis handled
by theAndroid implementation of the framewosds discussed in this secti@domebasic
information onEGL for understanithg the codeds also providedFor moredetailed information
aboutEGL, see:

A EGL Reference Pagex http://www.khronos.org/registry/egl/sdk/docs/man/
A EGL Specificationat http://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf

The initialization process is handled by tBErmAppContainer::InitializeEghethod,
implemented in the fil&DK\DevelopmenSamplesFrameworkAndroid\
FrmApplication_Platform.cppf the method returnERUE, the initialization was performed
successfully and a@penGL ESendering context has been bound to the calling thread.

This method firstnitializes an EGLDisplayinstance @ represent the default displd&yGLDisplay
is an abstraction of a display on which graphics may be drawn.Ealchisplayinstance
usually corresponds to a single physical screen. All d&&r objects are children of an
EGLDisplayinstanceFor this theOpenGL ESontextis represented by an EGL object of type
EGLContext soit is necessarto initialize anEGLDisplaybefore proceddg.

EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglinitialize(display,
NULL, /* major */

NULL); /* minor */

The last two arguments eflinitialize are optional. If pointerare providedo EGLint variables,
theyarefilled in with the major and minor version numbers of BH@L implementation provided
by the driver.

Before creahg anOpenGL ESontext answer a few questions:

A What capabilities should be provided by the default fraoféer?
A How many bits should its color buffer use per component?

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

24

http://www.khronos.org/registry/egl/sdk/docs/man/
http://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

A Should it include a depth buffer? If so, how many bits should it use per pixel?
A Shauld it include a stencil buffer? If so, how many bits should it use per pixel?
A Which OpenGL ESrersionis neeed?

A To where should the output from the rendering process be directed? Should it be to a window,
or to some kind of ofécreen render target?

Theunderlying hardware usually supports rendering to a number of different affee
configurationsTo query which of these match the needthefapplication, theeGL
implementatiormustprovide a list oEGLConfiginstances that represent supported
configurations.

The code snippet below definesfattribute lisd, which is a key/value array terminated by a
singleEGL_NONEentry. The attribute list specifies requirements for the friandier
configuration. Hergonly a handful of attributegre specifiedThere are many other properties
thatcouldbeincluded in the list. Sincthey ardeft out, EGL assumethat they take on the
default values defined in tHeGL specification.

The attribute list is passed as one of the parameters EGh@PI functioneglChooseConfig
This function returns a list &dGLConfiginstances that me#terequirements. These are sorted
on best match to the requested attributethe list sizas limitedto a single entryit is

guaranteed to retrieve the best matching goméition.

EGLConfig config;
EGLint configAttribs[] =
{
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_RED_SIZE, 5,
EGL_GREEN_SIZE, 6,
EGL_BLUE_SIZE, 5,
EGL_DEPTH_SIZE, 186,
EGL_STENCIL_SIZE, 8,
#ifdef _OGLES3
/I this bit opens access to ES3 functions on
// QCOM hardware pre - Android support for ES3
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3 BIT_KHR,
#else
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_ BIT,
#endif
EGL_NONE /* terminator */
I3
eglChooseCon fig(display,
configAttribs, &config,
1, /* config_size */
&numcConfigs);

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

NOTE:

Also make sure that the dimensions and the pixel format of the native window buffers matches
the image data th#s rendered. Sinci is working with native code, do this by calling
ANativeWindow_setBuffersGeometryhe native visudD is retrieved from the selected
configuration and defines the pixel format in a way that is guaranteed to be understood by
ANativeWindow_setBuffersGeometry

eglGetConfigAttrib(display,
config,
EGL_NATIVE_VISUAL_ID,
&format);

ANativeWindow_setBuffersGeometry(
m_pAndroidApp - >window, ANativeWindow_getWidth
(m_pAndroidApp - >window),

ANativeWindow_getHeight(m_pAndroidApp - >window),
format);

To create arDpenGL ESendering contexif is necessarto supply draw and read surfaces.
Given that it is atDpenGL ESontext thaEGL is being asketb create, this means:

A Draw surface corresponds to the surface that all draw calls operating on the default frame
buffer will rasterize to

A Read surface corresponds to the surface that all read calls operating on the default frame
buffer will take their dea from

In this case, a window surfadg being createdincethe applicationmustrender to arindroid
window. INnEGL, window surfaces are always doublaffered.

To create a surface, provide tB&LDisplayhandle, as well as tHeGLConfiginstancewhich
tells EGL the requirements for the object to be crealteid.possible tgass an attribute list to
further customize theurfacebehavior, but in this caseis not necessary.

EGLSurface surface = eglCreateWindowSurface(
display, config,

m_pAndroidApp - >window,
NULL); /* attrib_list */

All necessangeGL objectsare now availabléo create a®penGL ESontext.Call the
eglCreateContextunction passing thEGLDisplayandEGLConfigcreated earlier. Sindae
contextdoes not neetb share its namgpace with any other rendering conteset the third
argument taNULL.

In the attributdist passed teglCreateContextheEGL_CONTEXT_CLIENT_VERSION

propertyis setto 2. The interpretation of this is tHaGL creats a context fortie highest

OpenGL ESversion that is backwards compatible with the requested version and is supported by
the driver.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Qual commE Adr eno Beveoper Gugle ES

OpenGL ES 2.0 with Adreno

TheeglCreateContextall returns an OpenGL ES context instance but does not bind it to the
current threapthat isdone bytheeglMakeCurentcall in the next line. Ashown in thdollowing

codesnippet, the call uses tiLSurfacenstance created earlier as both d

raw and read

surfaces. After theglMakeCurrentall completes successfully, the application can start issuing

OpenGL EXallsfrom the thread that calleshyiMakeCurrent

EGLint contextAttribs[] =

{
EGL_CONTEXT_CLIENT_VERSION, 2,
EGL_NONE /* terminator */

2

EGLContext context = eglCreateContext(

display, config, NULL,

[* share_context */ contextAttribs);

if (eglMakeCurrent(display,

surface, /* draw */

surface, /* read */

context) == EGL_FALSE) { return

FALSE; }

2.3.2 Adreno GPU detection

If theapplication needs to check whetlan Adreno GPU is presentcén

1. Call glGetString(GL_RENDERERWithin an active rendering context to
containing platforrrspecific information about the active renderer.

2. Check if the retrieved string contains the substring Adreno

retrieve a string

TheAdreno GPU version is also found in i6&_ RENDERERSstring, following thefiAdrena

keyword.

The following code from th@latformDetecsample applicatioshowshow this can be done. It

parses th6&L_RENDERERstring and uses a text output function to digplee

resultsThis code

is foundin the file scene.cppmethodCSample::DetectAdrenaconst GLubyte* renderer =

glGetString(GL_RENDERER);

const char* pos = strstr((char *) renderer, "Adreno");

if (pos) { ShowText("Adreno GPU detected \'n"); pos
+= s trlen("Adreno"); if (*pos =="") ++pos; if

(‘strncmp(pos, "(TM)", strlen("(TM)")) { pos +=

strlen("(TM)"); // Ignore TM marker }

if (*pos =="") ++pos;
ShowText("Adreno version: %s \ n", pos); }
else {

ShowText("Adreno GPU not detect ed\ n");

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

27

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

2.3.3 Detect supported ES extensions

Depending on theunningversion ofOpenGL ESthere are two ways of retrieving a list of
extensions supported liyedriver.

NOTE:

A

p

UnderOpenGL ES 2.@and later), retrieve the list of extensions by calling:

const GLubyte* extensions = glGetString(GL_EXTENSIONS);

Bind thethread to a rendering context before making this call. It realNULL -terminated

string containing the list of extensions supported by the aGpenGL ESmplementation.

The extensionaredelimited by a single space character. The number of extensions present is
also available through tf@penGL ESonstant valu6&L_NUM_EXTENSIONS which can

be queried with glGetintegencall.

Be aware that the extensions string can be lafgpe.applicationmustnever assert that the
string be a certain maximum size lionit the number of extensioms a certain number.

ThePlatform Detecsample application in th&dreno SDKwas written forOpenGL ES 2.0
and it uses the above method to list all the ext@sssupportedl'he code to retrieve and
parse thesL_ EXTENSIONSstring, from the filescene.cppmethod
CSample::ListExtensioris as follows

const char* extensions = (const char *)
glGetString(GL_EXTENSIONS); for (int posStart = 0, posCurrent = 0;
tr ue; ++posCurrent) { char ¢ = extensions[posCurrent]; if (c
==""||c==0) { if(posCurrent> posStart) {
ShowText("Extension: %.*s \ n", posCurrent - posStart,
extensions + posStart); } if(c==0) { brea K;
I/l reached the terminating EOS character
}
posStart = posCurrent + 1; // next extension will start
/I after the space character

}

ThingsaresimplerwhenusingOpenGL ES 3.0@r later, where a new function called
glGetStringiis introduced. This function allows requegbr each individual extension name
by index number, meaning thiats no longer necessaty write stringparsing code.

In this case, the snippet above could be replaced by the following code:

glGetintegerv(GL_NU M_EXTENSIONS, &n_extensions);
for (int n_extension = 0;
n_extension < n_extensions;
++n_extension) { const GLubyte*
extension;
extension = glGetStringi(GL_EXTENSIONS, n_extension);
ShowText("Extension: %s \ n", extension);

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

2.3.4 Implementation of Blinn-Phong lighting

The simulation of light transfer & broadsubjectthatcannotbe coveedin depth in this
developemguide insteadijt focuseson the use case implemented by the Lighting sample in the
Adreno SDK The sample makes tliellowing assumptions:

A The BlinnPhong lighting model should be used.

A All meshes should be lit by light from a single direction. In other wah#gsendering model
mustassume that the light source is located far away, so that all light rays are travéimg
same direction.

It is encouraged tbecomefamiliar with thesubject matteto get a better understanding of a
variety of lighting models used in modern graphical applications.

2.3.4.1 Theoretical introduction

The standard lighting equation is one wayampute the contribution made by scene lighting to
the meshes rendered @.SL applications. Back i®penGL ES 1.lit was exposed to
applications as part of the fixddnction rendering pipeline. Fro@penGL ES 2.@nward, the
fixed-function rendering pigme is no longer supported, but the same technique can still easily
be mapped t®@penGL ESshaders.

Thestandard lighting equatide as follows:
1 Qi ¢ d@"Q"Q"Q?’)é €0 1 NMOODMNROHOE DO QDO 0 NE &
Wa GEQE € 01 Qwod 0 Q€ ¢ (2-1)

The equation defines a local lighting madlét focuses only on the fragment

being processed and ignores the existence of any other geometry in the scene.
This meanghat it will not produce any shadows, reflectiposrefractions.

These effectsmustbe simulated by separate techniques @inatnotcoveedin

this developermuide

In the equation, diffuse and specular factors shade the mesh, taking into account the properties of
thepoint light (locationandcolor) and the details of the shaded point (normal vector). The
ambient contribution is a special component to account faeictdight effects.

The geometry is also assigned a material. The material is a set of multipliers that are used in the
computations to give the geometry a distinctive look in the scene.

Diffuse contribution

The diffuse component is one of the two facimsed in the equation that model direct light, i.e.

light that strikes the object directly. It represents the amount of the incoming light that scatters off
the diffuse surface of the mesh and reaches the eye. The contribution is not affected by the
locaton of the viewer, since the reflected rays are scattered randomiyassiime a

statistically uniform distribution. However, the position of the light source relative to the surface
is important, because a surface that is perpendicular to the rayesatere light than a surface
oriented at a steeper angle.

Thediffuse component therefore follows Lamidgeiaw, which says that the intensity of the
reflected light is proportional to the cosine of the angle between the rays of light avairtta
surface For this reasorthe diffuse component is sometimes referred to as Lambertian lighting.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

This component canebcalculated using the diffuse contributeaquation
QQOAE 001 Qb6 WOBH 2 QQNVNV6 | VQNQQQO I O (2-2)

Where:

A nis the unit normal vector for the point being shaded.

A lis the unit light vectothatpoints toward the light source from the shaded point.

A diffusenaeriaiis the diffuse colorof the material

A diffusegn: is the diffuse coloof the light

A dot(x, y) is a dot vector operation applied against the vectors x and y.

It is important to remember to clamp the result of the dot vector operation to zero to prevent the
point from being lit from behind. In order to make sure that the dot operation returns a cosine of
the angle between vectarandl, the two vectors must be of unit length.

Specular contribution

The specular contribution is the second faoked in theequatiorthat moded direct light. It
represents the amount of incoming light that is reflected from the surface of the mesh and reaches
the eye.

Unlike the diffuse contribution, the intensity of this factor is highly dependent arathera
location. It 5 the specular contribution that gives the shiny appearance to rendered geometry.

The BlinntPhong model description of the speculantdbutionis as follows:

i NQO®E DO T QOODEDHR ¢ i i dasmigsi N QOdwRdI

i NQwod a di (2-3)
Where

A nis the unit normal vector for the point being shaded

A Vis the view vector, i.ea vector that points toward the eye from the shaded.point

A his a special halfway vector betweeand a light vector (as defined for the diffuse
component}, defined by thdnalfway vector calculation:

Q v aFaQEQRO « (2-4)
A glossinessaeria defines the glossiness of the material. Smaller vajivesa broader and more
gentle falloff from the hotspot. Large values give a sharpdll
A speculafgh is the specular cot of the light
A speculamaterialis the specular colaf the material
A dot(x, y) is a dot vector operation applied against the veatarsly.
As with the diffuse contribution, it isnportantto clamp the dot vector operation result to prevent
it from going negative.
Ambient contribution

In the real world, the light rays emitted by light sources usually bounce off the walls many times
before they reach the viewer. This is referred to as indirect light. The standard lighting model

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

does not track rays, sbe contribution of indirect lightingwustbe faked. The simplest way to
achieve this is by adding a constant value to each fragment to make up the missing energy
contribution. This is exactly how the ambient contribution works.

Mathematically, thembier contribution can be described as follows:

O ONRAE DO QOODAIBWRREHE O QQE O (2-5)
Where
A ambientis the global ambient light value for the scene

A ambienkateria IS the ambient coloof the material

2.3.4.2 GLSL implementation in Lighting demo

The following sections descrittew thelighting theorycanbe put to use iGLSL shader code.

The Lighting sample application can run in two modes. Each modea stightly different pair
of fragment and vertex shaders

A PerVertex modewherethe lighting calculations are performed in the vertex shiadére
result values are then interpolated by hardware during rasterization and then saved directly to
the rendetarget in the fragment shader stage.

A PerPixel mode moves the actual lighting calculations to the fragment shader vertex
shader stage is still used for some of the vector computations.

PerVertexmode takes less time to execute because the lighting calculations are performed on a
pervertex basis, i.eless often. However, the visual quality of this approach is significantly

lower when compared to the peixel approach. The differencemore olvious with lower

levels of geometry tessellation. The shiny reflections introduced by the specular contribution take
the biggest hit in this modethe highlights easily blend between vertices owing to the highly
nonlinear nature of their behavior.

Thefollowing sections describleow theGLSL shaders work for each of these modes.

Per-vertex rendering mode shaders

Both the fragment and the vertex shaders are stored BxkiDevelopmeniisset$Samples
Shader#erVertexLighting.glsfile.

The vertex shaat starts by declaring uniforms, attribytesd varyings

struct MATERIAL {

vec4d vAmbient;

vec4d vDiffuse;

vec4 vSpecular; };

uniform mat4 g_matModelView;
uniform mat4 g_matModelViewProj;

uniform mat3 g_matNormal; uni form
vec3 g_vLightPos; uniform MATERIAL
g_Material;

attribute vec4 g_vPositionOS;
attribute vec3 g_vNormalOS;

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

varying vec4 g_vColor;

The meaning of each of these fields is as follows:

A g_matModelViewi Modelview matrix transfers a singlvertex defined in object space and
positions it relative to the viewer

A g_matModelViewProj Modekview-projection matrix transfers a single vertex defined in
object space to the clip space

A g_matNormal Normal matrix used to transfer the normal vectorworld space

A g_vLightPos Light position in world space

A g_Materiali Stores material properties for the rendered mesh

The shader defines two input attributes:

A g_vPositionOS Input vertex datahe vertices are defined in object space

A g_vNormalOS Input normal datathe normals are defined in object space

Finally, the vertex shader passes a single-émumnponent vector to the fragment shader:

A g_vColori Shaded color value for the processed vertks final fragment valuis defined
by a weighted avage of three such values, and the final outcmdéectly correlated with
thesamplelocation within the triangle built of the three vertices

After the inputs and outputs are defined, continue with the main-gainy implementation

void main() { ve c4 vPositionES = g_matModelView *
g_VvPositionOS; vec4 vPositionCS = g_matModelViewProj *
g_vPositionOS;

Here, the input vertex positiadransformsnto two spaces:
A VPositionES Eye space (also known as world space)
vPositionCS Clip space

p

/[O utput clip - space position
gl_Position = vPositionCS;

A vertex shader behavior is undefineglif Positionis not set to any value. In this stepsure
the variable is set to the clgpace vertex position.

/I Transform object - space normals to eye - space vec3
vNormal = normalize(g_matNormal * g_vNormalOS);

Thesample carries out the lighting calculations in world space. This is necessary for the specular
component calculations to work correctly. After sBotming to world space, normalize the
vector, because the subsequent calculations require the vector to be of unit length.

/I Compute intermediate vectors vec3 vLight

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

= normalize(g_vLightPos); vec3 vView =
normalize(vec3(0.0,0.0,0.0)
vPositionES.xyz); vec3 vHalf =
normalize(vLight + vView);

Here calculate a few vectors thate necessarfpr the actual light calculations:

A vLighti The light vectoy note that the demo allathe user to move the light during
runtime, sdor simplicity and tutorial consistencyse the light position here to calculate the
actual light vector.

A vViewi The view vectarassume the camera to be located at the origin of the world space.

p

vHalf i The half vecto; calculated as described $ection2.3.4.1in theequation for halfway
vector calculation.

/I Compute the lighting in eye - space float fDiffuse
= max(0.0, dot(vNormal, vLight)); float fSpecular
= pow(max(0.0, dot(vNormal, vHalf)),
g_Material.vSpecular.a);

This part calculates the diffuse and specular contributibms computations map
straightforwardly tahenotes aboveNote that:

A Maxoperations make sutkeresult values never go below zero.
A The alpha channel of Material.vSpeculastores the glossiness factor.

/I Combine lighting with the material properti es
g_vColor.rgba = g_Material.vAmbient.rgba;
g_vColor.rgba += g_Material.vDiffuse.rgba * fDiffuse;
g_vColor.rgb +=g_Material.vSpecular.rgb * fSpecular;

}

In the final part of the vertex shader, take the computed standard light equation cintsilautd
multiply them by materiaspecific valuesThen sumup all values, which gives the final shaded
color forthe vertex. Values for each samgeeinterpolated between vertices.

Given thatit is describing the pevertex shading, the fragment shaiteas follows:

varying vec4 g_vColor;

void main() {

gl_FragColor = g_vColor; }

The shader takes the interpolated color value and stores it in the render target at index zero. Since

the demo is written foDpenGL ES 2.0thegl_FragColowariableis usedhere whichalways
maps to draw buffer at index zero.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

Qual commE Adr eno Beveoper Gugle ES

OpenGL ES 2.0 with Adreno

Per-pixel rendering mode shaders
The shaderssed in pefragment rendering modeork as follows.

Start with the vertex shadewhich isexpecedto be rather lightweighit should only output
vectors that can be linearly interpolated across the primitive surface. It should not perform any
lighting-specific computations, since thosél be executed on a pdragment level.

uniform mat4 g_matModelView;
uniform mat4 g_matModelViewProj;
uni form mat3 g_matNormal;
attribute vec4 g_vPositionOS;
attribute vec3 g_vNormalOS;
varying vec3 g_vNormalEs;
varying vec3 g_vViewVecES;
void main() { vec4 vPositionES = g_matModelView *
g_VPositionOS; vec4 vPositionCS = g_matModelViewProj *
g_vPositionOS;
/I Transform object - space normals to eye - space
vec3 vNormalES = g_matNormal * g_vNormalOS;
/I Pass everything off to the fragment shader
gl_Position = vPositionCS; g_vNormalES =
vNormalES.xyz;
g_vViewVecES =vec3(0.0,0.0,0.0) - VvPositionES.xyz;
}

The shader outputs the normal vector and the view vectoalsmdets thgl_Positionto the

vertex position after transforming it to clip space.
The fragment shader for the geixel rendering modappears as follows.

struct MATERIAL {
vec4 vAmbient;
vec4 vDiffuse;
vec4 vSpecular; };
uniform MATERIAL g_Material,
uniform vec3 g_vLightPos;
varying vec3 g_vViewVecES;
varying vec3 g_vNormalEsS;
void main() { // Normalize per - pixel
vectors v ec3 vNormal =
normalize(g_vNormalES); vec3 vLight =
normalize(g_vLightPos); vec3 vView =
normalize(g_vViewVecES); vec3 vHalf =
normalize(vLight + vView);

/I Compute the lighting in eye - space float fDiffuse

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

34

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

= max(0.0, dot(vNormal, vLight)); float fSpecular
= pow(max(0.0, dot(vNormal, vHalf)),
g_Material.vSpecular.a);
/I Combine lighting with the material properties
gl_FragColor.rgba = g_Material.vAmbient.rgba;
gl_FragColor.rgba += g_Material.vDiffuse.rgba * fDiffuse;
gl_FragColor.rgb += g_Material.vSpecular.rgb * fSpecular;

}

This should look familiar. The fragment shader starts by normalizing the interpolated vectors
whichis important, because even though they were initially at unit length, tipdlaigon

process may have changed their magnitude. Givenhibatot vectorare usedo obtain the

cosine of the angle between the two vectors, ensure that the vectors are always normalized.

The remaining calculatioreppearas if they were taken straigfrom the vertex shader from the
pervertex rendering mode implementation. The only difference is that they are now executed on
a perfragment basis, instead of pegrtex Thisdirectly translates tanimproved visual

experience, at the cost of sigadintly higher hardware utilization.

2.3.5 Retrieving ES constant values

NOTE:

Oncearendering contexs boundto thethread andanakesit active, the functiontisted inTable
2-2 retrieveOpenGL ESonstant values

Table 2-2 Getter functions in OpenGL ES

Getter function Available in ES 2.0? Available in ES 3.0? Available in ES 3.1?
glGetBooleanv n n n
glGetBooleani_v 4]] n
glGetFloatv n n n
glGetinteger64i_v 6 n n
glGetinteger64v 6 n n
glGetintegeri_v o) n n
glGetintegerv n n n

The getter function name consists of gh@etprefix, a part that indicates the result format, and a
suffix v ori_v. The suffixi_v indicates that the getter works for indexed states.

Using an indexed getter for a nonindexed state is not allowed and nesuiterror.

Every itemof theOpenGL ESstate has a base format in which the corresponding value is stored.
However, using a getter for a different format is permitbedhe case of a format mismatch, the
base valués converted to the format corresponding to the getter used.

The PlatformDetectample application from the Adreno SDK demonstrates how to retrieve the
constant maximums and ranges defined in the OpenGL ES 2.0 core specification. The following
code may be found itnefile scene.cpp, method CSample::ListMaxValues:

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

GLfloat aliasedLin eWidthRange[2] = {0.0f, 0.0f};
glGetFloatv(GL_ALIASED_LINE_WIDTH_RANGE, aliasedLineWidthRange);
ShowText("GL_ALIASED_LINE_WIDTH_RANGE = %f, %f \n",
aliasedLineWidthRange[0], aliasedLineWidthRange[1]);

GLfloat aliasedPointSizeRange[2] = {0.0f, 0.0f};

0lG etFloatv(GL_ALIASED_POINT_SIZE_RANGE, aliasedPointSizeRange);
ShowText("GL_ALIASED_POINT_SIZE_RANGE = %f, %f \n",
aliasedPointSizeRange[0], aliasedPointSizeRange[1]);

GLint maxCombinedTexturelmageUnits = 0O;
glGetintegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UN ITS,
&maxCombinedTexturelmageUnits);
ShowText("GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS = %d n",
maxCombinedTexturelmageUnits);

GLint maxCubeMapTextureSize = 0;
glGetintegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, & maxCubeMapTextureSize);
ShowText("GL_MAX_CUBE_MAP_TEXTURE_SIZE = %d\ n",
maxCubeMapTextureSize);

GLint maxfragmentUniformVectors = O;
glGetintegerv(GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&maxfragmentUniformVectors);
ShowText("GL_MAX_FRAGMENT_UNIFORM_VEKORS = %d\ n",
maxfragmentUniformVectors); GLint

maxRenderbufferSize = 0; glGetintegerv(GL_MAX_RENDERBUFFER_SIZE,
&maxRenderbufferSize); ShowText("GL_MAX_RENDERBUFFER_SIZE = %d \n",
maxRenderbufferSize);

GLint maxTexturelmageUnits = O;

glGetintegerv ~ (GL_MAX_TEXTURE_IMAGE_UNITS, &maxTexturelmageUnits);
ShowText("GL_MAX_TEXTURE_IMAGE_UNITS = %d \ n",
maxTexturelmageUnits);

GLint maxTextureSize = 0;

glGetintegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);
ShowText("GL_MAX_TEXTURE_SIZE =%d \ n",

maxTextureSize);

GLint maxVaryingVectors = 0;
glGetintegerv(GL_MAX_VARYING_VECTORS, &maxVaryingVectors);
ShowText("GL_MAX_VARYING_VECTORS = %d\ n",

maxVaryingVectors);

GLint maxVertexAttribs = 0O;

glGetintegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
ShowText("GL_MAX_VERTEX_ATTRIBS = %d \ n", maxVertexAttribs);
GLint maxVertexTexturelmageUnits = 0;
glGetintegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS,
&maxVertexTexturelmageUnits); ShowText("GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS =
%d n",

maxVertexTexturelmageUnits);

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36

Qualcomm®Adr eno E Op ®av8dper Bide OpenGL ES

2.0 with Adreno

GLint maxVertexUniformVectors = O;
glGetintegerv(GL_MAX_VERTEX_UNIFORM_VECTORS,

&maxVertexUniformVectors); ShowText("GL_MAX_VERTEX_UNIFORM_VECTORS = %d \n",

maxVertexUniformVectors);

GLint maxViewportDims[2] = {0, 0};

glGetintegerv(GL_MAX_VIEWPORT_DIMS, maxViewportDims);

ShowText("GL_MAX_VIEWPORT_DIMS = %d, %d \n",

maxViewportDims[0], maxViewportDims[1]);

For more detail about the glGet* methodsg

A TheOpenGL ESSpecificationat http://www.khronos.org/registry/gles/

specs/3.1/es_spec_3.1.pdf
A TheOpenGL ES Reference Paige glGetat https://www.khronos.org/opengles
/sdk/docs/man3/html/glGet.xhtml

There is also more information about the following

A Conversion rules

A Details of the states that are available to be queried

A Statesthatare considered nonindexed ahdse that are considersmdexed

2.4 About the OpenGL ES implementation

Table2-3 lists the values of all théL constant values as supported by AdrenOpenGL ES 2.0

contexs.

Table 2-3 Adreno GL constant values for OpenGL ES 2.0 contexts

GL constant name Adreno value

GL_ALIASED_LINE_WIDTH_RANGE 1.0t0 8.0
GL_ALIASED_POINT_SIZE_RANGE 1.0 to 1023.0
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 32
GL_MAX_CUBE_MAP_TEXTURE_SIZE 16384
GL_MAX_FRAGMENT_UNIFORM_VECTORS 224
GL_MAX_RENDERBUFFER_SIZE 16384
GL_MAX_TEXTURE_IMAGE_UNITS 16
GL_MAX_TEXTURE_SIZE 16384
GL_MAX_VARYING_VECTORS 32
GL_MAX_VERTEX_ATTRIBS 32
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 16
GL_MAX_VERTEX_UNIFORM_VECTORS 256
GL_MAX_VIEWPORT_DIMS 16384

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

37

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
https://www.khronos.org/opengles/sdk/docs/man3/html/glGet.xhtml
https://www.khronos.org/opengles/sdk/docs/man3/html/glGet.xhtml

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

2.5 Debug and profile

Debugging aOpenGL ESapplication is usually much more tirgensuming than debugging a
typical nongraphics application. EvérOpenGLESis askedo perform an invalid operation, it
is rare thatt results ina crashThe most commonrashcaseis whenaskingto download
client-side data from an incorrect memory locatibhere is ndatal exceptioreither.

The lack of a crash or fatakeeption means thafere is n@ood starting point for an
investigation. Typically, information about tpenGL ESstate configuratiomust be gathered
but this is not easy to do, unlassing aspecialized tool like th&dreno Profiler Otherwise,
mantally add glGet* calls to the code to find out ho@penGL ESs configured at a particular
point. However this can be a timeonsuming activity

A problem relating t@penGL ESusuallymanifessitself in one of two ways:

A Parts of the geometry may not renct at all, or may be drawn with visual glitches. Problems
like these are usually caused by driver bugsa imysunderstandingy the developeabout
the way context sharing or certain otldpenGL ESeatures work, by thread race conditions
in the application, or because the application assumes that it can use more resources of a
certain typee.g, texture unitsthan is supported by tf@@penGL ESmplementation.

A The application works correctly onglilevelopment platform but malfunctions on other
platforms. In addition to the causes listed above, a common cause for this problem is shader
bugs. Typical errors include missi#gxtensiordeclarations, omitted precision definitions,
packed/shared memblayout incompatibilities between platfornts,shaders attempting to
use more active samplers or uniforms than is supported [@pbeGL ESmplementation.

There is usually no straightforward way of diagnosing the shader issues mentioned in the second
point above. Whit some of the shader language problems could be determined by running
vendorspecific offline compilers againgte shaders, this is often an arduous and impractical

task, given that man@penGL ESapplications generate shaderstbefly. Al so, these compilers
rarely expose program linking functionality, which is one of the areas where many

shaderspecific incompatibility problems arise. As such, these issues can only be detected by
manually testingnapplication on a number of different gitams.

Fortunately, many of the problems listed in the first bullet point can be detected at development
time.

The following sections descrilike three different techniques tlivelopersan ug to detect
errors such as these, in the process of impiimgthe OpenGL ESapplication.Theyalso cover
some tools that can improgeftware performance.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 38

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

2.5.1 Debug an OpenGL ES application

2.5.1.1 Using glGetError

TheOpenGL ESAPI is a strict C API, meaning that any errors it detaotbe reported via
exceptions. The basic method for@penGL ESapplication to detect errors is the use of a
glGetErrorcall. This call can be issued in any thread to which a rendering context has been
bound.

There is a range of different error codes tlaat loe returned if an invalid cadl made The

normal rule is that iDpenGL ESdetects an error, then the offending command doesause

any modification othe OpenGL ESstate, nor does it rasterize any samples. The error code
GL_OUT_OF_MEMORYis a notable exception here. This error is reported when a memory
allocation request fails on the driver sideafapplication detects this error, it should assume that
the OpenGL ESstate has become undefined. The safest step it could take woultbbritate

the process.

All error codes thaDpenGL EScan report are:

A GL_INVALID_ENUM 71 One of theGLenumarguments passed to a function was invalid. A
common cause for this is thée developer passasenumvalue defined as part of an
OpenGL ESextenson, when that extension is not actually available. Another reason is that
the value is simply incorrect.

A GL_INVALID FRAMEBUFFER_OPERATIONI An API function that requires the draw
and/or read frambuffers to be complet@as calledbutthis was not the cas Note thathis
is notrequired byall API functions. This error code can also be reported iOpenGL ES
implementation does not support rendering to a particular foarffier configuration, in
which caseaheapplication should use a different seirdernal formats for the frameuffer
concerned.

A GL_INVALID OPERATIONT The operation attempted to perform was invalid, given the
currentOpenGL ESstate configuration. This error code is vagméelthe offending command
must be narrowed dowo find the case of the error. For large applications especially, this
may not be a trivial task.

A GL_INVALID VALUE i A numeric argument passed to a function was invalid. This usually
occurs for reasons similar to the ones describe@EiINVALID ENUM.

A GL_OUT_OF_MEMORY:i The driver ran out of memory while trying to execute the
commandTheapplication should terminate as soon as possible, as the working environment
can no longer be assumed to be stable.

A generalized description of the error is given above, but a rpeufie interpretation is
dependent upon the command causing the error.

note: glGetErrordoes not teltheapplication which command has reported the error, and that errors can
be reported bpPpenGL ESommands called implicitly by the drivex.g.,when the driver has
previously decided to defer a call such as a draw call, and is now issuing it internally in the course
of processing another command.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39

Qual commE Adr GLES Bevaoper Guide OpenGL ES 2.0 with Adreno

Internally, when the driver detects an error in an API call, it raises a flag corresponding to one of
the codes. If further errors are detectbdy do not affect the recorded error state. When
glGetErroris called, the cached error code is returned and the flag is lowered so that subsequent
glGetErrorcalls returnGL_NO_ERROR

Since the Adreno driver ches API calls in a command buffgtGetErrorcalls can be

considered expensive, because they flush the pipeline and wait for the completion of all buffered
commands. Unless performance is unimportanttfeapplication, it is not recommended to
insertglGetErrorcalls after every API call made, at least not in release builds. A good
compromise is to insert guagiiGetErrorcalls at strategic locations, for debug builds only. Using
this approach, performance is unaffected in production buildsnahdcase that a bug report

arrives it will not take long forateam to prepare a debug version thatlmansea to locate the
rendering pipelingartcausing the problem.

Using GL_KHR_debug
There are some significant limitations with the usglGfetErrot
A The error codes do not convey precise information about the type of error.

A Tofix a problem, the programer must first work out whicpenGL ESAPI call has caused
the error to be raised, and mtistnlook at the bigger picture.g, OpenGL ESstate to
understand why it is that the error code is being generated. Thisujakeselopment time
that could instead have been spent on implementing new features.

A There is no way of getting the driver to make a callback to the application so that the
progranmer cauld insert a breakpoint to find out what went wrong and where.

The Adreno driver supports a special extension c&@ledKHR _debugwhich aims to address
these needs and includes a number of featarshamethe debugging experience fopenGL
ESdevelogrs.

The following sectiorfocuseson the features that are most relevant to debudgpenGL ES
applications and will provide an overview of the API. For further detzéls,
https://lwww.opengl.org/registry/specs/KHR/debug.txt

When theGL_KHR_debugextension is supported, applications can sign up for driver callbacks

by callingglDebugMessageCallbackKHRhis function allowsheregisteing of a callback

function pointer andraoptional usespecified argumenOpenGL ESuseghat callback to

provide feedback to the application in the form of humreadableNULL -terminated strings.

The feedback can contain detailed information about why an error code was generated, as well as
information of the following types:

A Warnings about the use of deprecated functionality, or of something that is marked as
undefined in the specification

A Implementatiordependent performance warnings

A Warnings about using extensions or shaders/enaorspecific way

A Userinjected messages

A Debug group stack notifications (covered below)

Each feedback message is accompanied by a esatinfsthat provide information abotie
A Origin of the message (driver, shader compiler, window system, etc.)

A ID of the message

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 40

https://www.opengl.org/registry/specs/KHR/debug.txt

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

A Type of the message (error report, performance warning, portability hint, etc.)
A Severity level of the message (high, medium, low, notification)

The callbacks will only occur 6L DEBUG_OUTPUT_STATE_KHRs enabled by calling
glEnable To disalte the functionality again, cajjiDisablefor the same statenum

The application can inject its own messages into the debug stream by calling
glDebugMessagelnsertKHR his is especially useful for middleware which can use the
mechanism to provide hints the developer or notification of any error situations detected.

All messages either generated by the driver or inserted into the command stream using
glDebugMessagelnsertKH&te written to the active debug group, which is the top of the debug
group stak. A new debug group (identified by a usgrecified message) can be pushed onto the
stack by callingyl-PushDebugGroupKHREXisting debug groups can be popped off the stack by
calling glPopDebugGroupKHRWhenever a debug group is pushed onto or poppext tifé

debug group stack, the message that has been associated with the group will be inserted into the
stream. An example use case would be to use debug groups to mark the start and end of each
rendering pass.

The application can filter out unwanted megss by calling l®ebugMessageControlKHRAny

of the properties of the message can be used as a filtering key. This is referred to as volume
control. The volume control setting applies to the active debug group, and will be inherited if a
new debug groupsipushed onto the stack.

If the application does not register a callback function but doableGL_DEBUG_OUTPUT _
STATE_KHR then the messages will be stored in a message log. The log can hold up to
GL_MAX_DEBUG_LOGGED_MESSAGE®essages. Once the storditie up, any
subsequently generated messagesliscarded until such time as the application frees up some
space by fetching one or more messages. The messages can be fetched by calling
glGetDebugMessageLogKHRvhich returns both the message string thiedassociated
properties of each message.

Another useful feature offered by tld. KHR_debugextension is the ability to provide the
callback information in two different modes:

A Asynchronous mode (active by defaiilffhe OpenGL ESmplementation can calhe debug
callback routine concurrently from multiple threads, including threads that the context that
generated the message is not currently bound to (examples include but are not ljmited to
threads to which other contexts are bound, or threads thatemsally used by the driver). It
can also issue the callback asynchronously aftedpgenGL ESommand that generated the
message has already returned. WAissnchronous mode is active, ittieeresponsibility of
theapplication to ensure thread dafe

A Synchronous mode The driver is not allowed to issue more than one callback at a time, per
rendering context. The callback will be made beforeadpenGL EScommand that generated
the debug message is allowed to return. Synchronous mode causds tdltmaimplicitly
flushing, so performance is greatly reduced. However, given the fact that the callback occurs
at the time of th®©penGL ESAPI call, this mode greatly simplifies the debugging process
for developers.

Synchronous mode can be explicitlyadled bycalling glEnablefor
GL_DEBUG_OUTPUT_SYNCHRONOUS_KHRode.Forthe application to go back into
Asynchronous debugging modgDisablecan be called for the sarsaum

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41

Qual commE Adr eno Beveoper Gugle ES OpenGL ES 2.0 with Adreno

NOTE:

TheGL_KHR_debugextension also allowthe developer ttabelOpenGL ESobjectswith

NULL -terminated strings using the functiagi©bjectLabelKHRandglObjectPtrLabelKHRThe
label can later be retrieved usigi§setObjectLabelKHRor glGetObjectPtrLabelKHRThis could
help easily identifOpenGL ESobjects during the debugging procesgthout the need to
traverse the applicatiém internal data model.

Shader debugging

Situationsmay arisewvhere a rendering glitch is caused not by incor@enGL ESAPI usage,
but rather by a bug hidden somewhere in one of the shaders that mak@rgythm used bihe
draw callsHere are a few tips on how to approach such situations

A

Start by making sure that all the input attributes definethfevertex shader are passed

correct values. For instancethielighting is not working as expected, start by verifying that

the normal data that is being used for the calculations is, watidcheck this by passing
unmodified normal data to the fragment shader to verify by visual inspection that each vertex
is asggned correct vector values.

Be careful when modifying shadeE.g, if the developecommented out the existing
implementatiorandreplaced it with code to pass the normal vector to the fragment shader,
thenit could cause many of the existing input attributes and uniforms to become inactive.
Depending on howheapplication and shaders are written, this could make the bug even
more difficult to track down. Instead of removing the whole body, arrange for atl othe
variables that might contribute to the result value to be multiplied by a very smallegue
1.0/256.0 for an internal format that uses 8 bits per compositiat they do not hide the
result value thais beingvisually inspeatd

Do the same faall the uniforms used e shader. Pay special attention to uniform block
members. Make sutbe shaders define the same uniform block layout tagapplication is
assuming.

Use transform feedback to transfer the data out of the rendering pipelinlhe process,

if it is suspeadthat some ofhe calculations may be executing incorrectly. Transform
feedback allows$or checkingthat the data is passed correctly through the whole rendering
pipeline, except for the fragment shader stage. This bexespecially important when
starfng touse geometry and/or tessellation control/evaluation shaders.

If the platform supports geometry shaders, use them to emit helper geoengtrormal
vectors.

If some textures are not being sampled correctly likedy that they are considered
incomplete. The easiest way to check this is by sele@IndNEARESTminification
filtering, and settingsL_ TEXTURE_BASE_LEVELandGL_TEXTURE_MAX_LEVEL to
the index of a mipmap thhas beemploaded.

If textures are stilinaccessiblegnsure no sampler object is overriding the texture parameters
of a texture unit to which that texture has been bound. Verifythbaamplemniforms are
set to use the corresponding texture units.

Use theAdreno Profilertool to edit the shders and investigate the results in tizaé.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42

Qual commE Adr eno Beveoper Gugle E S OpenGL ES 2.0 with Adreno

2.5.2 Profile an OpenGL ES application

NOTE:

If theapplication is underperforming, the first step is to identify the rendering pigelisthat

are taking too long. Unfortunately, given ti@penGL ESvorks asynchronously, it is not enough
just to record the time before aaffereach rendering pass and then check the time difference.
The valuegyivenwould usually onlyshowhow long it took the driver to store the request in the
command buffer.

Here ae a few approaches to measure the GPU time taken by a specifictparteoidering
pipeline:

A Starting withOpenGL ES 2.0if wantingto measure time taken for a given set of API calls,

delimit that region wittglFinishcalls. Record the start time juster the firsglFinishcall,

and the end time just after the secgfitinishcall. The time difference will tethow much

time it took to execute that block. This method is less accurate than thelondecause of

the longer round trip that needs t® tmade before the execution flow is returned to the caller.
It also causemore degradation to overall rendering performance because trgHirssh

call mustwait until all previously enqueued commands finish executing on the GPU.

If usingOpenGL ES 3, a more efficient wajs to use sync objects as a lightweight
alternative to the heavyweigblFinishcalls.To do so, follow the same pattern used in the
first solution, but replace eagftFinishcall with the following code:

GLsync sync;
sync = glFenc eSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
glClientWaitSync(sync);

Do notforget to release the sync objeatingglDeleteSynavhen finished with the
measurements.

It is possible taise theScrubber and Grapharodesof the Adreno Profilerto collect more
detailed information about rendering performarkaa.more detaibn the topi¢ see
Section8.1

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

43

3 Using OpenGL ES 3.0 with Adreno

3.1 New features in OpenGL ES 3.0

The arrival ofOpenGL ES 3.0n August 2012 substantially expanded @genGL ESeatureset
available to embedded application developers. Up tditha, many of the more complex
features had only been available to desktop developers OpigGL 3.X

To take a few examples:

A Sampler objects and vertex attribute array divisors became a core feature in OpaEaGi
3.3

A Seamless cube map filteringdafence sync objects became core in deskipenGL 3.2
A Instanced draw calls and uniform buffer objects were introduced in deSkeqGL 3.1

A Framebuffer objects (with multiple render target support) and transform feedback were
introduced in deskto@penGL3.0

All of the above are included in co@penGL ES 3.0lt is true that partial support for some of
these features was availabledpenGL ES 2.®ia the extensions mechanism. But their
availability could not have been assumed across the dp#aGL ES2.0ecosystem. &
developemvanted to use a feature that was not part oEtB2.0core specificationtheywould

have needed to implement a fafick codepath to cater for devices not supporting the extension.
This greatly increased the complexity bétimplementation and the amount of testing needed. As
a result, developers were usually discouraged from experimenting with the new features.

This sectiorpresentsa conceptual view of many features introduce®penGL ES 3.0
Section3.2 coves a subset of these features at the API level.

For further information about all of the features, se€dpenGL ES 3.@pecificationat
https:/imww.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

3.1.1 Two-dimensional array textures

Two-dimensional array textures (2D array textures) Isuifgbn the concept ohé
two-dimensional texture (2D texture).

In a 2D texture, a mipmap level consists of a single image. In a 2D array texture, a single mipmap
level holds a number of images. Each image held within a single mipmap is called a layer. All
layers at a given mipap level have the same resolution.

Layer data is in the internal format requested for the 2D array texture object at the time it was
created. The width and height of all the layers at a given mipmap level is also definedat creat
time and cannot be chg&d during the lifetime of the texture object. The number of layers a
two-dimensional array texture object holds for each mipmap level is knotie exture object
depth. This also needs to be definedratiton time.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

2D Array Texture

Mipmap level 0

Layer 0 (16x16)
Layer 1 (16x16)
Layer 2 (16x16)

Mipmap level 1
Layer 0 (8x8)

Layer 1(8x8)
Layer 2 (8x8)

Mipmap level 2
Layer 0 (4x4)

Layer 1 (4x4)
Layer 2 (4x4)

Mipmap level 3
Layer 0 (2x2)

Layer 1 (2x2)
Layer 2 (2x2)

Mipmap level 4
Layer 0 (1x1)

Layer1(1x1)
Layer 2 (1x1)

Figure 3-1 2D array texture

A mipmap chain can be allocated for a 2D array texture. As a miniihigipossible talefine
just one base mipmap level for each layer, and texture sampling will still Waigkcan be done
if mipmap-based texture filterings not necessaryr if available memory is low.

All layers atthe mipmap leveh+1 must be half the size of the layers at mipmap layvely., if
usng a layer size of 4x8 at mipmap level 0, each layer at mipmap level 1 would rieeegeta

size of 2x4. Mipmap level 2 would be 1x2, and for the last mipmap level each layer would take a

single pixel. Each dimension is clamped at 1.

Once mipmap storage is defined as either mutable or immutable, 2D array textures can be:
A Used as renderngets; hyers can be rendered using framéfer objects

A Sampled from any shader stage using @&vEL texture sampling functions

Nearly all texture sampling functions available for 2D texturdsSrShading Language @n

be used to sample 2D array tengst The only functions that do not support this are projective
texture lookups and their derivativ&hould the requested location exceed the defined range in
any axis, he behavior of the sampling functions is controlled by S/T/R wrap modes

Texture sampling functionsthatoperate on twalimensional array texture targets take an
additional parametewhich defines the layer index, from which the data should be sampled.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

45

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

Important

Values returned by 2D array texture sampling functions always operate thitdayer

boundaries being sampled froknis only the set of mipmaps defined for sampled layer that is

used for calculating the result value. Hence, it is guaranteed that none of the taps used during the
sampling process will take data from more thae layer. This is a fundamental concept of 2D

array texturesthat distinguishes them from 3D textures

2D array textures are often used to enhance existing texture atlas techniques. They are also useful
for multitexturing or video frame storage purposesny2D array texturesis it possible to
reducethenumber of texture bindings thateconfigurel for each draw call, because shad=s

be writtenthat access multiple layers of a single &Eay texturevia a single texture sampler.

3.1.2 Three-dimensional textures

From a conceptual point of view, thrdanensional textures (3D textures) are very simil&o
array textures. The key differences between the two lie in how the data sampling process is
performed and how the mipmap chain is built.

3D textures cosist of a set of twalimensional images called slices. All slices combined together
form a single mipmap level. Subsequent mipmap levels must be half the size of preceding
mipmap levelsA mipmap chain for a 3D texture object consists of a set of cubwise each
subsequent cuboid,im generalhalf the size of the one that precedes it

Mipmap level 0 Mipmap level 1 Mipmap level 2

WIDTH MAX (1, WIDTH/2)

Slice 3

Slicm
D!

Slice 3 MAX(1,WIDTH/4)

Slice 2
Slice 1

Slice 0 l
/4

NOTE: Dimensions are clamped at 1

MAX
(1, HEIGHT/2)

Figure 3-2 3D array texture

note: This is different from 2D array textures, where each layer must have a separate migimap ch
allocated.

For each slice, the base mipmap level must be defined. Beyond this, declaration of subsequent
mipmaps is optional, if nearest or linear minification filtering is used. Using mijirasgd
minification filtering for a 3D texture object, for wdi the mipmap chain has not been defined,

will render the texture incomplete, causing any sampling operations to vet#(®, O, O, 1)

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 46

Qual commE Adr GLES Bevaoper Guide Using OpenGL ES 3.0 with Adreno

For 3D textures, it is assumed that all slices are uniformly distributed across a unit cube which
starts at (0, 0, ®nd ends at (1, 1, 1&g, if a 3D texture object was defined wildepth of 4:

A Slice at index 0 would be at Z =0
A Slice at index 1 would be at Z = 0.33
A Slice at index 2 would be at Z = 0.67
A Slice atindex 3would beatZ =1

All 3D texture sampling functions IBLSL require the caller to provide a 3D location within the
unit cube that the data should be sampled from. The resultisalaleulated from the slice data
using a number of linear interpolation operations.

note: This is a key difference between 2D array textures and 3D textures. When sampling from a 2D
array textureOpenGL EShever ussedata outside theampledayer.

The data returned e 3D texture sampling functions when trying to sample locations defined
outside the cube dependsthewrap mode configuration.

A common use case for 3D textures is the storage of volumetric data, since the functionality
provides a hardwaraccelerated means of calculating an interpolated value anywhere within the
defined datset.

3.1.3 Immutable textures

The only type of texture objects recognized by the core specificatiopeiGL ES 2.0vere
mutable texture objects. This meant that an OpenGL ES application was allowed, at any time
during its execution, to completely redefine teture mipmap configuration. Not only could it
add or remove mipmaps dhefly, but it was also allowed to change the internal format or
properties such as tledth or heightof any mipmap of any texture object. This freedom greatly
reduced the optimizen possibilities for driver implementations, which were forced to keep
track of the completeness of all textures used by the application. Texture completeness
verification is a significant overhead, especially if it has to be executed for every draéwecall
application makes.

The solution for OpenGL ES is immutable texture objects. Initially introduced in the
GL_EXT _texture_storage extension, they became a core featOmeaofGL ES 3.0lmmutable
textures work just like mutable textures, except thiatmo longer possible to apply any of the
following API functions to texture objects that have been made immutable:

A glCompressedTexlmage

A glCopyTeximage

A glTexlmagé

A glTexStoragéi Can be used to initialize an immutable texture object

The newglTexStorge* entry-points make a texture immutable. They initialize a mipmap chain
for a userspecified texture target, but do not fill the mipmaps with any contents. It is the
responsibility of theapplication to fill the immutable texture object with actual cotgdy using
glTexSubimageentry-points.

Immutable textures do not have a specific use case. Instead, they should be considered a means of
reducing the load on the driver, which often translates to a better rendering performance.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

note: On Adreno platforms, these of immutable textures has a major performance advaitiage/s
use mmutable textureand avoid all mtabletextures

3.1.4 Per-texture object LoD clamp

The OpenGL ES 3.0 API specification includes a technique for organizing textures at multiple
resolutionghat enables the display of lengsolution textures and slowly bringing in more
detailed textures over multiple frames as the camera (position of the viewer) in the scene
approaches the textured object. This kind of technique is typically used in mappiaggation
applications. When zooming in to the map, the larger resolution textusthe loaded, but
streaming that texture takes tinh@wer resolution textures are displayed in the meantime. This
provides a better and more immediate viewing expeg@md also helps manage memory
bandwidth more efficiently withoudompromisingoerformance.

As an example, consider a texture that is 1024x1024 texels in size with 32 bits per texel. The Mip
at LoD = 0 for this texture is 4MB and Mips¥D are about 5KB in size as seelfrigure3-3. As

a starting point for thedD effect, download Mips fdevels 410 by setting the base level to 4

and minimum loD to 4. Once the application starts, download the Mip 3,2,1,0. Then by setting

the base level to 0, slowly, over multiffames, change mindD to 0. Thus, the texture

gradually phases to the highessolution.

16 x 16

32 x 32

64 x 64

]

Packed nupmaps levels 4-10
Based on|4KByte pages

Figure 3-3 Texture LoD

Use the following parameters in glTexParameter() function to control diffecrd.L

A GL_TEXTURE_BASE_LEVELI Specifies the index of éhlowest defined mipmap level;
thisis a non negative integer value, where the initial value is O

A GL_TEXTURE_MAX_LEVELT Sets the index of theighest defined mipmap levehis is
a non negative integer value, where the initial value is 1000

A GL_TEXTURE_MAX_LODi Sets the maxnumlevelof-detail parameter; this
floating-point value limits the selection of the lowest resolution mipmap @sigimipmap
level), where the initial value is 1000

A GL_TEXTURE_MIN_LODT Sets the mimmum levelof-detail parameter; this floatingpint
value lirmits the selection of highest resolutioripmap (lowest mipmap level), wheitget
initial value is-1000.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

3.1.5 PCF for depth textures

Shadow mapping cresgshadows in higlend rendering for motion pictures and television.
However, it has been problen@atd use shadow mapping in réiahe applications like video
games due to aliasing problems in the form of magnjéigdies Shadow mapping involves
projecting a shadow map on geometry and comparing the shadow map values with-thevight
depth at eachixel. If the projection magnifies the shadow map, aliasing in the form of large,
unsightly jaggies will appear at shadow borders. Aliasing can usually be reduced byigisarg
resolution shadow maps and increasing the shadow map resolution with teshaigju
perspective shadow maps.

Using perspective shademvapping techniques and increasing shadow map resolution does not
work when the light is traveling nearly parallel to the shadowed surface because the
magnification approaches infinity. Higdnd rendering software solves the aliasing problem by
using a technique called percentafgser filtering

Unlike normal textures, shadow map textures cannot be prefiltered to remove aliasing. Instead,
multiple shadow map comparisons are made per pixel andgadtogether.

This technique is called percentageser filtering (PCF) because it calculates the percentage of
surface that is closer to the light and, therefore, not in shadow. Consider the example PCF
algorithm as described in Reeves et al. 1987, vbatled for mapping the region to be shaded

into shadow map space and sampling that region stochastically; i.e., randomly. The algorithm was
first implemented using the REYES rendering engine, so the region to be sheatgchm

four-sided micropolygon.

Figure3-4is an example of that implementation.

Figure 3-4 Percentage-closer filtering algorithm

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49

Qual commE /OpanGLES Beveloper Guide Using OpenGL ES 3.0 with Adreno

Adreno 4«x has hardware support for the OpenGL ES 3.0 feature of percentage closer filtering
where a hardware bilinear sample is fetched into the shadow map texture, thereby alleviating the
aliasing problem with shadow mapping, as showfigure 3-5.

PCF OFF

Figure 3-5 Percentage-closer filtering from the Adreno SDK

To understand how to use this featueger to the OpenGL ES 3.0 PCF sample from the Adreno
SDK.

3.1.6 New internal texture formats

OpenGL ES 3.0 introduces sized internal formats that can be used to define texture data contents.
Texture contents can now be expressed using fleating, signed andnsigned integer internal
formats, as well as in a number of different ssptimized formats. Two new internal formats can

be used to store color information expressed in the SRGB color space.

Table 3-1 Internal texture formats supported in ES 3.0

Type Internal formats

Depth A GL_DEPTH_COMPONENT16
A GL_DEPTH_COMPONENT24
A GL_DEPTH_COMPONENT32F

Depth+Stencil A GL_DEPTH24 STENCIL8
A GL_DEPTH32F STENCIL8

80-NU141-1B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50

Qual commE Adr eno Beveoper Gugle ES

Using OpenGL ES 3.0 with Adreno

Type

Internal formats

Floating-point

GL_R11F_G11F B10OF

GL_R16F
GL_R32F
GL_RG16F
GL_RG32F
GL_RGB16F
GL_RGB32F
GL_RGB9_E5
GL_RGBA16F
GL_RGBA32F

Signed integer

GL_R16l
GL_R32I
GL_RsI
GL_RG16l
GL_RG32I
GL_RGSI
GL_RGB16l
GL_RGB32I
GL_RGBSI
GL_RGBA16l
GL_RGBA32I
GL_RGBASI

Signed normalized

GL_R8_SNORM
GL_RG8_SNORM
GL_RGB8_SNORM
GL_RGBAS_SNORM

sRGB

GL_SRGB8
GL_SRGB8_ALPHAS8

Unsigned integer

GL_R16UI
GL_R32UI
GL_R8UI
GL_RG16UI
GL_RG32Ul
GL_RG8UI
GL_RGB10_A2UI
GL_RGB16UI
GL_RGB32UlI
GL_RGBS8UI
GL_RGBA16UI
GL_RGBA32UI
GL_RGBAS8UI

Unsigned normalized

> >N D> DD D> DD DD D> D> DD D DD DD D> D> DD D D

GL_R8
GL_RGS8
GL_RGB5_A1l
GL_RGB565
GL_RGB10_A2
GL_RGBS8
GL_RGBA4
GL_RGBAS8

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

For sized internal formats, it is guaranteed that the actual resolution of the internal texture data
storage matches the size defined by the format.

Tip
For backward compatibility, unsized internal formats continue to be supported. However, using

them maycauseundesirable interactions between differ®penGL ESextensions and other
corner casedJsing the new sized internal formats instéadecommended

3.1.7 Transform feedback

It is becomingnorepopular to perform computations on the GPU and reuse the result data in
subsequent draw calls.

Unfortunately, in the core version GpenGL ES 2.0there was only one feasible way of using
the GPU for generglurpog computing. All calculations had to be done in the fragment shader
stage, storing the results in a color attachment of the currently bound dravbiriere There

were many limitations to this approachcluding

A CoreES2.00nly supported rendering tenderbuffers and textures usiGli RGBA4,
GL_RGBA5_AlandGL_RGB565internal formats, which were very limited in terms of
supported precision

A Core ES 2.0 did not supparlor-renderable floatingpoint internal format
A Core ES 2.0 only supportese cola attachment per framguffer.

OpenGL ES 3.introduces support for transform feedback, which alldvexaptuing of output
variablevalues, leaving the vertex shader stage. Once captured, the values can be transferred to
one or more buffer object regioimstwo different ways:

A A single buffer object region can be used to store values of the varyings in the order specified
by the application

A Multiple buffer object regions can be used. In this case, each varying is assigned to a different
buffer object rempn. The multiple buffer object regions may be part of the same buffer object,
but this is not necessarily the case.

Using a single buffer object region, the maximum number of components that can be captured
from a single vertex shader is guaranteed tatleast 64. Using multiple buffer object regions,
the maximum number of components that can be captured from a single vertex shader is
guaranteed to be at least 16.

Given the range of new vertex data types support&$iB.Q transform feedback offers
possibilities comparable to compute shadeiisich isa feature not available @penGL ESuntil
OpenGL ES 3.1

Example use cases include:

A Debugging Investigate the data that the vertex shader operates on or check the values that
are passed to the fragmeshiader stage

A GPUIT Accelerated data processing

A Physics Boids andparticle systems

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 52

Qualcomm® Adr e n 0 E Op e DeBdlopeE Guide Using OpenGL ES 3.0 with Adreno

3.1.8 Instanced draw calls
TheOpenGL ES 2.@\PI supports two types of draw calls:
A Using vertex array data witiDrawArrays
A Using index data witlgIDrawElements

OpenGL ES 3.introduces a new type of draw calls called instanced draw calls. The names of the
new API entry points are formed by suffixing the above function namednsidinced

A glDrawArraysinstanced
A glDrawElementsinstanced

The key feature of the instanced drea¥ is that it executes repeated draw operations with a
userspecified repeat count. Each repeat of the draw operation is called an inBrenetex
shadercan use¢he newkES Shading Languagm®nstangl_VertexID. This constant holds the
index value bthe draw call instance for this shader invocation.

With the new entry points, a supporting feature called vertex attribute divisor was introduced. For
attributes backed by enabled vertex attribute arrays, the divisor allowdcsienifofa rate at
which the values exposed in the vertex shader via attributes should advance:

A If the rate is set 0, the affected attribute advances once per vertex

A Otherwise, the rate defines the number of instances that need to be drawn before the attribute
advances.

Vertex attribute divisors are useful for specifying vector properties that take different values per
instance (or number of instances)y, color, material ID, and model matrices.

A question that is often brought up in the context of instanced draw c&@Why? What do
instanced draw callgrovide compared to a series of draw calls executed one after ahaitner
answer is twefold:

A With instanced draw calls, the driver needs to perform state validation only once per call, not
once per igtance. Using aequence of namstanced draw calls, the driver would have to
perform the validation many times, once for each call. This includes vertex array object
validation, also framéuffer and texture completeness checks. These tasks all take a certain
amount oftime to execute and the cumulative effect can be significant.

A Any memory transfer operations need to be performed only for the first instance, the same
memory beingeused for subsequent instances.

For best performance it is crucial to find the optimabbeé between the complexity of the

geometry drawn by each instance and the number of instances used. It might be faster to use a
smaller number of instances, each instance drawing a larger number of primitives. Always profile
applicationrendering performace toersurethe maximum performancis givenfrom the

hardware.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

Figure3-6 showsa use case for this feature. The birds were drawn with a single instanced draw
call instead of dozens of separate imstanced draw calls, resulting in significantly improved
performane:

Figure 3-6 Single instanced draw call

3.1.9 Query objects

For optimal performance of any 3D application, ensure that the rendering pipeline operates
asynchronously as far as possible. For an explanationthre&dpic OpenGL as a Graphics
Pipeline.

OpenGL ES 3.@rovides a new feature called query objects which albageryof a number of
different properties relating to the rendering process, in an asynchronous manner. These queries
do not stall the rendery pipeline, unless explicitly requested to do so. This means that the
application is able to keghe CPU busy with other tasks until the GPU is able to deliver the
required information.

OpenGL ES 3.@llows applications to query the following renderinggtine properties with
guery objects:

A Have any of the subsequent draw calls generated fragments that passed the depth test?

A How many vertices were written into the bound transform feedback buffer(s) as a result of
executing the subsequent draw calls?

A notable example of a use case for query objects is occlusion queries. This technigue aims at
improving rendering performance by dividing the process of drawing a complex mesh into two
steps:

1. A simplified representation of the mesh is dratumy, instead ofirawing a teapot, a
bounding box that encapsulates the obgdrawn Configure a query object to maintain a
counter keeping track of fragments passing the depth test.

2. The application checkthe counter is set at a nogro value. If so, it means the teapot is
visible andit must be drawnlf not, there mudbe adifferent object located in front of it,
which fully covers the teapot. In this cagavould make no sense to issue the expensive
draw call.

Combined with othr culling techniques, occlusion queries can significantly reduce frame
rendering times. But if used wrongly they can have a serious negative impact on rendering
performance. It is therefore a good idea to prafierendering pipeline from time to timeithy
occlusion queries first enabled and then disabled, to make sure they are actually helping
performance.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

The following recommendations can help make effective use of occlusion queries:

A Becareful if trying to use occlusion queries with a siAggess algorithm. It is easy to stall the
driver while it waits for the query result to become available. The Adreno driver batches as
many rendering commands as possible before dispatching themhtardheare. At a time
when all draw calls for the rendering pass have been issued by the application and a
glGetQueryObjecttall has been made to retrieve the query result, it is possible that the
guery command is still held in a driver queue and hasetdigen sent to the GPU. The
safest way to use occlusion queries in sifmgles algorithms is by using query data from the
previous frame.

A Itis easier to make performance gains using occlusion queries with multipass algorithms, as
long as the query data hot requested in the same pass from which it was issued.

3.1.10 New vertex data types
OpenGL ES 3.introduces new types that describe vertex attribute data. These are:
A GL_HALF_FLOAT 16-bit half floatingpoint values
A GL_INT T 32-bit signed integer values

A GL_INT 2 10 10 10 REV Special packed formahatallocates 10 bits for X, Y and Z
components,ra 2 bits for the W componertiits are interpreted as representing signed
integer values

A GL_UNSIGNED_INTT 32-bit unsigned integer values

A GL_UNSIGNED_INT_2 10 1010 REVi Same aGL_INT_2 10 10 _10_ REMexcept
that the bits are interpreted as representing unsigned integer values

3.1.11 Vertex array objects

Modification of OpenGL ES state is a serious issue for anything more than the most trivial
application.State modificéion operations are a fundamental and essential part of thdétRthe
cost of these operations cannot be ignored by any application that needs a high level of
performance.

One approach is to group multiple state items into a single compound state @bjaptex state
changes can then be carried out quickly by switching between two of these compound state
objects.

OpenGL ES 3.0ollows this method EveryOpenGL ES 3.@pplication may be expected to set

up vertex attribute arrays for its draw calls. Thareninput attributes a vertex shader takes, the
larger the number of vertex attribute arrays that need to be configured. This directly translates to
the number of API calls that need to be made beforengaudraw call.

Vertex array objects were introdeetinOpenGL ES 3.0They encapsulate several state items
including the vertex attribute array configurationmidkingany of the following calls while a
vertex array object is bound, then the state held by the vertex arrayishbjedated rather than
the contexiwide state:

A gIDisableVertexAttribArray
A glEnableVertexAttribArray
A glVertexAttribDivisor

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

A glVertexAttribIPointer
A glVertexAttribPointer

Any draw calls made while a vertex array object is bound to the rendering caseetkie
propertiesof the objecinstead of the contextide ones.

noTe: Vertex array objects also capture tBe ELEMENT _ARRAY_BUFFERbuffer object binding

Once a pool of vertex array objetsconfiguredthis can be donduring a loading screeit)is
no longer neeellto remnfigurethevertex attribute arrays every time a draw talthade
Instead, switch to a different vertex array object using a single API call. This apperach
improve rendering performance.

3.1.12 Uniform buffer objects

As seen irthediscussion of vertex ay objects, th®©penGL ESstandard is evolving toward
presenting an API focused on using as few state changes as possible.Uniform buffer objects are
another example of this. As with vertex array objects, one of the goals of uniform buffer objects
is to redice the number of API calls that need&ssuel before every draw call.

One common bottleneck in complex rendering pipelines is the need for frequent uniform updates.
The values assigned to uniforms exist as part of the state of a program objetedinésthat

when makng the program object active, the uniform valdesnot need to be reloadddowever,
uniforms are often used to represent properties that change freqaentiyodel matrices, light

or material settings. This means that even ifisgthe draw callsthe many calls to the

glUniform* entry pointscannot be avoided

TheOpenGL ES 3.0 Shading Langudgt&oduces the concept of uniform blocks. This is a
language construct that groups together an arbitrary set of variables and straoaigrsays of
these.

note: Opaqgue object typesuch as samplerare not supported.

Uniform blocks are defined separately for vertex and fragment shader stages, and any of the fields
defined within a uniform block can be freely read from within the shader.

In OpenGL ES 2.Quniforms were always defined aglobal scope. l®penGL ES 3.0it is still
possible to define uniforms aiglobal scope, in which case thayeconsidered to be a part of the
default uniform block, which has an ID of 0. The default uniform block is provided for backward
compatibility and cannot be used with the new API methods introduced to support uniform buffer
objects.

An important aspect ofniform blocks (other than the default uniform block) is that they no
longer exist as part @ program objedtate. Instead, the contents of the uniform block are
defined by a usespecified region of a valid buffer object. This means tihtcumbersome
glUniform* API does not need to be ustedconfigure the contents of every single uniform within
theprogram objectThe approach now i® fill a region of a buffer object with values ftire
uniforms and then associate that region with the uniform block.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

If warting to update any of the uniforms, #tiere isto do is to make an update to the appropriate
part of the buffer object region that has been mapped to the uniform Bloslcan be done

using a call to thglBufferSubDatdunction, or by mappingie buffer object region into process
space and making the update there.

This functionality comes with a few limitations. The maximum uniform block size for all
conformantOpenGL ES 3.0mplementations must be at least 16,384 bytes. Howeveof uge

to 12uniform blocks simultaneously at each shader stagiowed This significantly boosts the
amount of uniform dattheshaders are able to access. After all, the total of 196,608 bytes per
stage is much more than was possible with a single default mniockfor OpenGL ES 2.0

For exampleif rendeing a set of barrels and each barrel was made of a different matezial,
uniform block could store an array wiaterialproperties. Using uniform buffer objects,
combined with instanced draw calisvhole set of barrelgan be renderedith just a single draw
call.

Under the Adreno architecture, the performancdetiniform buffer object can be further
improved by following these recommendations:

A Considerreorganizing the uniform buffer membefsome jarts oftheuniform buffer are
frequently updatedso as to break those parts oub a separate uniform buffer

A Avoid using sparse uniform buffersy boing sojt will not only help improve memory
usage, but could also reduce tiaa transfeamount needed when updating regionthef
uniform buffer storage

3.1.13 Buffer subrange mapping

Buffer objects have been a part of the d®@penGL ESstandard since the releaseESs 1.1
However, their role used to be quite limited. Their only purpose waskoupavertex attribute
arrays, so that the vertex data would be taken from VRAM instead of fromsilienbuffers, so
as to avoid the overhead of copying vertex data on every draw call.

With the introduction of transform feedback@penGL ES 3.@seeSection 3.1.7), data
computedoy the vertex shaderow directly update thebuffer object storage. It now becomes
crucial to have a means of mappthg generated data back into process space for investigation.

OpenGL ES 3.introduces a new API to fulfill that need. An application is now able to map a
valid region of any buffer object into process space to atkessisting contents or to update
thememory.

Buffer subrange mapping and transform feedback together form a basis for GPGPU applications.
As of version3.0, OpenGL ESecomes a viable platform for this class of application.

3.1.14 Multiple render target support

OpenGL ES 2.@rovided support for redering to up to three render targets at the same time. In
the core version dES 2.Q applications were not able to render to more than one color
attachment, one depth attachmemd one stencil attachment.

Many modern rendering techniques rely ondhiéty of the fragment shadéo store data into

multiple render targets during the execution of a single draw call. The lack of support for multiple
render targets in OpenGL ES 2.0 proved to be a major limitation for these techniques. The usual
workaround was to decouple the drawprgcess into separate iterations. Each iteration would
store a different type of information into the one available color attachment.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

For instance, the first iteration could render normal data, the second could rendespsodd
position data, and thedaiteration could output albedo data. However, the cost associated with
this approach meant that is was rarely viable.

The problem has been addresse@jienGL ES 3.0y a set of framéuffer enhancements. Using
OpenGL ES 3.0t is guaranteed to be alde draw simultaneously to at least four color
attachments. Each of the available color attachments, depth attacbrstencil attachment can
now be bound to any one of the following targets:

A
A
A
A

A

Renderbuffer

Selected mipmap level of a 2D texture
Selectedmipmap level of a cubmap texture face
Selected mipmap level of a 2D array texture layer
Selected mipmap level of a 3D texture slice

3.1.15 Other new features
TheseOpenGL ES 3.@eaturesareonly a small fraction othe changes introduced in this version.

Othernew features introducedclude

A

A

10/10/10/2signed andunsigned normalized vertex attributes
10/10/10/2unsigned normalized and unnormalized integer textures
11/11/11/10loating-point rgb textures

16-bit (with filtering) and 32bit (without filtering) floatingpoint textures
16-bit floating-point vertex attributes

24-bit depth renderbuffers and textures

24/8depth/stencil renderbuffers and textures

32-bit depth and 32f/8 depth/stencil renderbuffers and textures

32-bit, 16-bit and 8bit signed and unsignadteger renderbuffers, textures and vertex
attributes

8-bit srgb textures anaddmebuffers (without mixedRGB/SRBGrendering
8-bit unsigned normalized renderbuffers

8-bit-percomponent signed normalized textures

Ability to attach any mipmap level to mimebuffer object

Additional pixel store state

At least32 texture units, at least 16 each for fragment and vertex shaders
Buffer object to buffer object copy operations

Depthtextures and shadow comparison

Draw command allowing specification of rangeamicessed elements
ETC2/EACtexture compression formats

Framebufferinvalidation hints

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58

Qual commE

Adr en o Bevéloper GUBle E S Using OpenGL ES 3.0 with Adreno

A

A

Indexedextension string queries

Mandatoryonline compiler

Minimum/maximum blend equations

Multi-sample renderbuffers

Non-powerof-two textures with full wrap modsupport and mipmapping
Nonrsquare and transposable unifamatrices

Opengl shading langua@es 3.00

Pixel buffer objects

Primitive restart with fixed index

Programbinaries, including querying binarié®m linked GLSL programs
R and RG textures

Seamlessube maps

SharedexponenRGB 9/9/9/5textures

Sizedinternal texture formatwith minimum precision guarantees
Stretchblits (with restrictions)

Syncobjects and fence sync objects

Texture LoD clamp and mipmap level base offset and max clamp
Textureswizzles

Unsignednteger element indices with at least 24 usaiie

More details on these features can be found in the the following documents:

A

A

TheOpenGL ES 3.0 Specification http://www.khronos.org/registry/gles/specs
/3.0/es_spec_3.0.3.pdf

TheOpenGL ES 3.0 Shading Language Specification
http://www.khronos.org/registry/gles/sp&&®/GLSL_ES Specification_3.00.4.pdf

3.2 Using key features

The following sections descritb®w to use the API for some of these new features.

3.2.1 Using 2D array textures

OpenGL ES 3.introduces a new texture target called TEXTURE_2D_ARRAY. Once a
generated texture object has been bound to that targetglBingTexture it becomes a 2D array
texture. Any attempt to bind that texture object to any other texture targes nesuBL error.
This remains the case until such time as thautextbject is deleted.

Although working with 2D array texturethere area number of functions with the name suffix
3D. This might seem confusing, but these functions can operate on eithetvad texture object
types:

A 2D array texturé Specifytargetparameter a6L_TEXTURE_2D_ARRAY

A 3D texturei Specifytargetparameter a6L_TEXTURE_3D

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59

http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
http://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.4.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

2D array textures can be initialized as mutable or immutable texture objecBe¢tea3.1.3 or,
for a more detailed description of the differences between the two types, refeOjpeth@L ES
3.0 Specificationat https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0)3.pdf

First, look at how to set up a mutable 2D array texture. Each mipmap level defines a set of layers,
andcanbe initialized as follows:

A UseglTeximage3Dio set up the mipmapsing a nonompressed internal format
A UseglCompressedTexlmage3Df set up the mipmap usirgcompressed internal format

Each mipmap level must be configured separately. Remeimbatisfy the usual texture
completeness rules when configuring the miprciagan.

To set up an immutable 2D array texture, gidexStorage3Dnstead. This entry point sets up a
complete mipmap chain for the texture object in a single call and supports both compressed and
uncompressed internal formats.

Now, look at howto repla@ the contents of a 2D array texture

To replace one complete layer at a specific mipmap level, or just a region within the layer, use
glTexSublmage3DThis works for both immutable and mutable textures.

To replace all layers at a specific mipmap leved gi$exlmage3D This worls for mutable
textures only andanbreak the texture completeness property of the object.

UseglFramebufferTextureLaydo attach a single layer from a specified mipmap level of a 2D
array texture to a frameuffer. Framebuffer mmpleteness rules applyestheOpenGL ES3.0
Specificationat https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.Q0.3.pdf

To copy a region of a currently bound read buffer to a specific layer at a given mipmap level of a
2D array texture, usgiCopyTe<Sublmage3D

Retrieve the ID of the texture object bound to@&le TEXTURE_2D_ARRAYtexture target of
the current texture unit by issuingliset* query with a pname parameter value of
GL_TEXTURE_BINDING_2D_ARRAY.

2D array textures hold exactly the same texture parameter state as other textureQpeessin
ES All glGetTexParameteraindglTexParameterfunctions can be used with the new
GL_TEXTURE_2D_ARRAYtexture target.

In theES Shading Language new set ocdampler types has been introduced:
A isampler2DArrayi For signed integer data types)

A sampler2DArray For norinteger data types

A usampler2DArray For unsigned integer data types

The followingES Shading Languadexture sampling functions can be used wiigse new
types:
A texelFetch

A texelFetchOffset
A texture

A textureGrad

A textureGradOffset

A texturelLod

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 60

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

A textureLodOffset
A textureOffset

3.2.2 Using multiple render targets

OpenGL ES 3.introduces support for rendering to multiple color attachments simultaneously
from a single fragment shader invocation. It is guaraniebd able to render to at ledistr
render targets at the same time.

Use the following functions to add and remoraniebuffer attachments:
A glFramebufferRenderbuffer

A glFramebufferTexture2D

A glFramebufferTextureLayer

For detailed API descriptions for these functipeeeOpenGL ES 3.Reference Pages
https://www.khronos.org/opengles/sdk/docs/man3/

The following color attachments poirdad moreare available i©OpenGL ES 3.0
A GL_COLOR_ATTACHMENTOto render to color attachment zero

A GL_COLOR_ATTACHMENT1to render to color attachment one

A GL_COLOR_ATTACHMENTZ2to render to color attachment two

The maximum number of color attachment pofotause is given by the value of
GL_MAX_COLOR_ATTACHMENTS

By default, fragment shader outpsitlirected to a single render target only. If the default frame
buffer is boundas draw framéuffer, then outpuis to the back buffer. If a usesupplied frame
buffer is bound as draw franibeiffer, then outpuis to the render target attached as color
attachment zero of that frarbeffer. The output is taken from the vector valuered in the first
output variable of the fragment shader, as defined by its location.

To use multiple render targets, ugBrawBuffersto set up custom mappings from fragment
shader outputs to tHeamebuffer color attachment points.

E.g, after bindingthe framebuffer as draw frambuffer, use the following call:

GLenum bufs[3] = {GL_COLOR_ATTACHMENTO,
GL_NONE,
GL_COLOR_ATTAQUENTZ2}; glDrawBuffers(3, bufs);

This sets up the mappings as follows:

A The first fragment shader output vaii@ls directed to the render target at color attachment
zero.

A The second fragment shader output variébteotused.

A The thirdfragment shader output varialidadirected to the render target at color attachment
two.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 61

https://www.khronos.org/opengles/sdk/docs/man3/

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

note: The mapping of each output variablemstrained. The first output variable may only be
mapped as color attachment zero, the second as color attachment one, etc. To be more precise, the
entry at (zerebased) index positionin bufsmust be eithésL_ COLOR_ATTACHMENTIor
GL_NONE This is inregards taisergenerated frameuffers; the rules for the default frame
buffer are different.

These bindings are stored as a part of a draw buffer configuration, which is part dbfiffene
object state.

Fordetailed API descriptions for glDrawBuffeseethe OpenGL ES 3.Reference Pagex
https://www.khronos.org/opengles/sdk/docs/manBseethe definitiveOpenGL ES3.0
Specificatiomat https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

3.2.3 Using query objects

To submit an asynchronous quetys necessario set up a query object of the appropriate type.
The first step is to obtain a query object [k this using theglGenQueriegunction.

note: For some of the oth@penGL ESD types, using the glGen* API to generate an ID is an
optional steplt is possible® make up identifiers, which work just as well, provided eachdbd
is unique.

This is not the case fglGenQueriesUse of this APl is mandatory for all query objects.
CoreOpenGL ES 3.@upports two types of queries:

A Boolean occlusion queries

A Primitive query objects

Boolean occlusion queries provide a boolean result. The ie€illt TRUEIf any samples
created as a result of processing a set of draw cale inthrough the depth test. Otherwitdee
resultis GL_FALSE To create &8oolean occlusion query, birlde query object to one of the
following two target types:

A GL_ANY_SAMPLES PASSED The resulis GL_TRUE only if any of the samples have
made it through the depth test.

A GL_ANY_SAMPLES_PASSED_CONSERVATIVE The same as
GL_ANY_SAMPLES PASSEDexcept that th®penGL ESmplementation is allowed to
use a less precise teshich can result in false positives being returned in some cases.

Primitive query objects provide an unsigned integer result. The result is a countehasisie

initially set to 0. To use a primitive query object, bthd query object to the target
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTENThe counteis then incremented

every time a vertex is written to one or more transform feedback hufarthis to happe, bind

the transform feedback buffer(s) and enabled transform feedback mode before making the draw
call.

Use theglBeginQueryfunction to bind a query object to a query target type, and to mark the start
of a set oOpenGL ESommands for which the quergsult is to be determined.

Use theglEndQueryfunction to mark the end of the set of commands.

To retrieve the result of the query, call the functit@etQueryObjectuiwith thepname
parameter set tGL_QUERY_RESULT

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 62

https://www.khronos.org/opengles/sdk/docs/man3/
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

NOTE:

OpenGL ESmplementations are asymncmous in their nature, so query object results are not
available immediately afterglEndQuerycall. Before attemping to retrieve the result value,
always check its availability by callinfGetQueryObjectuiwith the pnameparameter set to
GL_QUERY_REULT_AVAILABLE . Otherwiseit risks a pipeline stall.

When no longer ne@tl a query object, release it withlgiDeleteQueriesall.

3.2.4 Using vertex array objects

NOTE:

NOTE:

NOTE:

A vertex array object stores the following informatfon each vertex attribute array:
A Enabled/disabled stat&_VERTEX_ATTRIB_ARRAY_ENABLED)

A Buffer objectlD to beusedas the vertex attributerraydatasource
(GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING

A Normalization settingGL_VERTEX_ ATTRIB_ARRAY_NORMALIZED)

A Pointer settingGL_VERTEX_ATTRIB_ARRAY_POINTER

A Size settingGL_VERTEX_ATTRIB_ARRAY_SIZB

A Stride settingGL_VERTEX_ATTRIB_ARRAY_STRIDB

A Uses unconverted integesstting GL_VERTEX_ATTRIB_ARRAY_INTEGER
A Vertex attribute divisorGL_VERTEX_ATTRIB_ARRAY_DIVISOR

A Buffer objectlD to beused as the source of index data for indexed draw calls
(GL_ELEMENT_ARRAY_BUFFER_BINDING

Vertex array objects do not store generic vertex attribute settings (static vector values that can be
assigned usinglVertexAttrib* functions). These are considettecbe part of the program object
state instead.

Beforeusinga vertex array object, generate one or more IDs gagnVertexArrays
As with queryobjects use of theylGen* APl is mandatory for vertex array objects.

By default, vertex array objects arenfigured as follows:
A None of the attributes are backed by vertex attribute arrays

A No buffer object is bound to theL._ELEMENT_ARRAY_BUFFERbuffer object binding
point

Further information about vertex array object configuration defaults can be founddpe¢h&L

ES 3.0 Specificatiohttp://www.khroros.org/registry/gles/specs/38/ spec_3.0.3.pdf

Before modifyng the vertex array object configuration or use it for draw calls, first bind it to the
rendering context usingiBindVertexArray

For backward compatibility witdopenGL ES 2.0a vertex array object with ID 0 is bound by
default. While this default vertexray object is bound, the only available source for index and
vertex data is clierside data pointers.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 63

http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

Tip
Avoid using clientside data pointers at all costs. They are very expensive in terms of
performance. Every time a draw ciallmadeusing vertex attbute arrays backed by clieside

data buffers, the attribute data needs to be copied from client process memory to video memory
(VRAM).

Oncethevertex array objeds bound setthevertex attribute array state using the functions
glVertexAttriblPointe andglVertexAttribPointer This has not changeduchsinceOpenGL ES
2.0. Formore informationseeOpenGL ES 3.Reference Pagex
http://www.khronos.ay/opengles/sdk/docs/man3/htrglVertexAttribPointer.xhtml

The same principles that apply to setting vertex attribute array state also apply to getting vertex
attribute array state. If a nondefault vertex array object is bound to the rendering context, then the
glGetVertexAttrib*functions operate on that object rather thamh@generic context state.

Tip
Quickly switch between different vertex array objects ugjigindVertexArray This is much
faster than reconfigurinthe vertex attribute arrays ethe-fly before every draw call.

When finished with them, release one or more vertex array objects by calling
glDeleteVertexArrays

3.3 Walkthrough of sample applications

This section describebreeOpenGL ES 3.@emo applications from the Adreno SDKexplairs
briefly howeachdemo works and highligethe most interesting features of the source code.

3.3.1 2D array textures 1T Demo

Find this demo at the following directorgSDK_install_dirxDevelopmeni utorial3OpenGLES
\20_Texture2DArrayOGLES3he core of the implementatiggfound in the filemain.cpp

The application demonstrates how to sample from 2D array textures. The source code locations
described in this secticare:

A Initialize functioni Block marked with the commefiCreate a texte, loaded from an image
file.

A Renderfunctioni How the demo application rendeat the API level.

A Vertex and fragment shader bodieklow a 2D array texture is sampledd® Shading
Languageand how the rendering pipeline is organized in this democatiain.

3.3.1.1 Initialization

Initialization is done by thénitialize function. It can be broken down into three separate parts:
1. Twotextures are loaded from TGA files
2. A 2D array tewre is created and initialized

3. A program object is constructed and linked, gdnagment and vertex shader bodies defined
within the demo application code

Loading the texturedoes not us®penGL ES$sothis document ignores. it

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 64

http://www.khronos.org/opengles/sdk/docs/man3/html/glVertexAttribPointer.xhtml

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

Setting up the 2D array textuie of more interest. Here is a breakdown of what hapipethe
code:

glGenTextures(1, &g_hTextureHandle);
glBindTexture(GL_TEXTURE_2D_ARRAY, g_hTextureHandle);

A single texture object ID is generated and is associated with a 2D Array Texture target.

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

Magnification and minification filtering for the texture object is seGto LINEAR. This is

important because the default setting for minification filtering requires mipraagdghe demo
application is not creating any.ttis step was skippethe texture object would be considered
incomplete and any texture sampling functions used on this texture object would always return (O,
0, 0, 1) instead of tha texture lookupesult

glTeximage3D(GL_TEXTURE_2D_ARRAY, 0, internalFormat, nWidth[0],
nHeight[0], g_nlmages, 0, nFormat[0], GL_UNSIGNED_BYTE,

NULL);

This call allocates storage space for two layers at mipmap level zero

note: The layer contents are not uploadedhis call.

for(inti=0;i<g_nlmages; i++) { glTexSublmage3D(
GL_TEXTURE_2D_ARRAY, 0, 0, 0, i, nWidth[i],
nHeight[i], 1, nFormat[i], GL_UNSIGNED_BYTE,
plmageDatali]); }

This is where the layer contents are uploaded, looping to upload laydagdtier

Finally, in the last part of the function, the program object is constructed and linked. There is
nothing here that is new for OpenGL ES 3@this document ignores. it

3.3.1.2 Rendering a frame

Here isa closer look at thRenderfunction

glClearColor (0.0f, 0.0f, 0.5f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 65

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

NOTE:

Start by clearing both color and depth buffers. Since no flanffer object is bound at this time,
these operationareperformed using the default frarbaffer.

glUseProgram(g_hShaderProgram); glBindTexture(

GL_TEXTURE_2D_ARRAY, g_hTextureHandle); The demo then activates its
program object and binds the 2D array texture object to the current texture
unit .

glVertexAttribPointer(g_VertexLoc, 4, GL_FLOAT, 0, 0,
VertexPositions); glEnableVertexAttribArray(

g_VertexLoc);

glVertexAttribPointer(g_TexcoordLoc, 2, GL_FLOAT, 0, 0,
VertexTexcoord); glEnableVertexAttribArray(
g_TexcoordLoc); glDrawArrays(GL_TRIANGLES, 0, 6);
glDisableVertexAttribAr ray(g_VertexLoc);

glDisableVertexAttribArray(g_TexcoordLoc);

Finally, configure and enable two vertex attribute arrays, draw a couple of triangles, and then
disable both vertex attribute arrays again.

The vertex data is organized in such a way that the result triangles form a quad located at the
center of the screen. Vertices emitted by a vertex shader invocation are positioned in a clip space
which can be described as a cube spanning frbyl(, -1) to (1, 1, 1). When a primitive is built

from these vertices, any part of that primitive not falling within the ¢sibipped so that each

vertex fits within the region defined by the cube. Therefore, to completely fill the surface of the
two-dimensional bck buffer with contents computed in the fragment shader stage, make sure that
thedraw call or calls generate a rectangle spanning frtm() (corresponding to the botteleft

corner) to (1, 1) (corresponding to the-aght corner).

Thedemo centerthe rectangle in the screen space but does not entirely fill the available surface.
Try experimenting with the demo implementation to gain a better understanding of how screen
space rendering works.

3.3.1.3 Shaders

The body of the vertex shader body is coded énvélriableg_strVSProgram

#version 300 es in vec4 g_vVertex; in vecd
g_vTexcoord; out vec4 g_vVSTexcoord; void main() {
gl_Position = vec4(g_vVertex.x, g_vVertex.y,
g_vVertex.z, g_vVertex.w); g_vVSTexcoord =

g_vT excoord; }

In the functiomrmain the shader setg_Positionto the value it gets from one of its input

attributes, without applying any transformations. This implies that the input vertex data is
expressed in the normalized device coordinate space. Texture coordinates are provided via the
other input attribute anare also passed through to the fragment shader stage untransformed.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 66

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

NOTE:

The body of the fragment shader is coded in the vargdgFSProgram

uniform sampler2DArray g_slmageTexture;
in vec4 g_vVSTexcoord;
out vec4 out_color; void main 0

{

out_color = texture(g_slmageTexture, vec3(g_vVSTexcoord.xyx));

The shader declares a 2D array texture sampler uniform calt#chageTexturdn the function
main the uniform is used to sample the texture.

The second argument of ttexturecall includes a third component. This specifies the index of
the layer that the datasampled from.

Important

The layer index of a 2D array texture is an integer value, so to know how this is derived from the
supplied floatingpoint componentthe procss is as follows:

1. Value isrounded to the nearest integeg.€0.4 rounds to 0, but 0.5 rowswp to 1.0

2. Rounded value is amped to the number of layer@rfa 2D array texture with 3 layers, this
would result in an integeralue between 0 and 2, inslue.

3. Rounded and clamped value leaves the layer index thatecasel for the sampling process.

3.3.2 Rendering to 2D array textures i Demo

Find this demo at the following directorgSDK _install_dirxDevelopmeniTutoriald
OpenGLE®25 FramebufferTextureLayef@ ES3Q

This application demonstrates a f@penGL ES 3.@eatures in actignincluding
A Rendering to 2D array textures
A Blitting layers of a 2D array texture to different regions of the default ftauffer

The demo uses an edtreen framéuffer torender a number of frames to successive layers of a
2D array texture. Each frame shows a pyramid, rotated to a slightly different angle. Once
rendered, these layers are used to composite the back buffer contents using thaffeame
blitting mechanism. iRally, the back buffer is swapped with the front buffer to present the
rendered frame to the user.

To get a better understanding of how the application works, look at the following areas:
A Configuring the offscreen framéuffer

A Carrying out the ofscreerrendering

A Compositing the final rendering result

The dscussion of parts of the code that are similar to those already covénegarlier demo
walkthroughare skipped

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 67

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

3.3.2.1 Configuring the off-screen frame buffer

The offscreen framéuffer is constructeth CreateFBO

glGenTextures(1, &g_hTextureHandle); gIBindTexture(
GL_TEXTURE_2D_ARRAY, g_hTextureHandle);

glTexParameteri(GL_TEXTURE_2D_ARRAY,

GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteril GL_TEXTURE_2 D_ARRAY, GL_TEXTURE_MIN_FILTER,
GL_LINEAR); glTeximage3D(GL_TEXTURE_2D_ARRAY, 0,

ninternalFormat, nWidth, nHeight, g_nLayers, 0,

nFormat, nType, NULL);

Above is the code that initializes a 2D array texture. Mh&9 layers, sincd is the value of the
constang_nlLayers

glGenRenderbuffers(1, &(*ppFBO) - >m_hRenderBuffer);

glBindRenderbuffer(GL_RENDERBUFFER, (*ppFBO) - >m_hRenderBuffer);
glRenderbufferStorage(GL_RENDERBUFFER , GL_DEPTH_COMPONENT24, nWidth,
nHeight);

Here it createsa separate renderbuffer to hold depth data dtit2drecision.

glFramebufferTextureLayer(GL_FRA MEBUFFER, GL_COLOR_ATTACHMENTO,
g_hTextureHandle, 0, 0);

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, (*ppFBO)- >m_hRenderBuffer);

Now theframebufferis configuredwith the following attachments:
A Layer zero of the 2D array texture is attached to color attachment point zero
A Renderbuffer is bound to the depth attachment point

3.3.2.2 Off-screen rendering

The oftscreen renderingrpcess is done by the first part of leeaderfunction:

fo r(int i=0; i<g_nLayers; i++) {
BeginFBO(g_pOffscreenFBO, i);
glClearColor(0.0f, 0.5f, 0.0f, 1.0f);
RenderScene(fTime+i*0.1f);
EndFBO(g_pOffscreenFBO);

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 68

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

The block loops over allD array texturdayers. For each layeBeginFBOis used to configure
the framebuffer object, which it does as follows:

glBindFramebuffer(GL_FRAME BUFFER, pFBO- >m_hFrameBuffer);
glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,
g_hTextureHa ndle, 0, layer);

glViewport(0, 0, pFBO - >m_nWidth, pFBO - >m_nHeight);

Attach the current layer as color attachment z&lso ensure that the viewport resolution stays
synchronized to the texture resolution. If tisamot donethen either the pyramigould not fit in
the render target, or only part of the render target would be drawn to.

Once this has been domendemakes a call tRenderScenavhich is responsible for sending
the commands needed to render the pyramid.

glBindFramebuffer(GL_FRAMEBU FFER, 0);
glViewport(0, 0, g_nWindowWidth, g_nWindowHeight);

Finally, in EndFBQ bind back to the default franbaiffer and reset the viewport resolution to the
dimensions of the window.

After therenderoop has finished executing, @D array texturdayers are filled with pyramids
rotated to different angles. At this point, none of these pyrahagsmade it into the back buffer
yet.

3.3.2.3 Compositing the final image

The composition process is implemented by the remaining part aériderfunction.

FLOAT offsets[9][4] =
{

{0.0f, 0.0f 1.0f/3.0f, 1.0f/3.0f },

{1.0f/3.0f, 0.0f, 2.0f/3.0f, 1.0f/3.0f },

{2.07/3.0f, 0.0f, 1.0f, 1.0f/3.0f},

{0.0f, 1.0f/3.0f, 1.0/3.0f, 2.0f/3.0f },

{ 1.0f/3.0f, 1.0f/3.0f, 2.0f/3.0f, 2.0f /3.0f},
{2.0f/3.0f, 1.01/3.0f, 1.0f, 2.0f/3.0f},

{0.0f, 2.0f/3.0f, 1.0f/3.0f, 1.0f},

{ 1.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 1.0f },

{ 2.0f/3.0f, 2.0f/3.0f, 1.0f, 1.0f},

h

This starts with an array defining the regions where the pyran@des are to be placed. Nine
rectangles are defined. The four values given for each rectangle are as follows:

A X coordinate of the tofeft corner

A Y coordinate of the tofeft corner

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 69

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

A X coordinate of the bottoright corner
A Y coordinate of the bottoright corner

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBindFramebuffer(GL_READ_FRAMEBUFFER,
g_pOffscreenFBO - >m_hFrameBuffer);

Prepare the frambuffer bindings prior to entering the loop that will do the compositing:

A The default framéuffer ismade the target of all rendering operations to blit the pyramid
images to the back buffer.

A The offscreen framéuffer is set to behe source for read operationisisttells
gIBlitFramebufferwherethe source data should be taken from.

for(int i=0; i< g_nLayers; i++)
{
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER,
GL_COLOR_ATTACHMENTO, g_hTextureHandle, 0, i); glBlitFramebuffer(
0, 0, g_pOffscreenFBO - >m_nWidth, g_pOffscreenFBO
>m_nHeight, INT32(g_nWindow Width*offsets[i][0]),
INT32(g_nWindowHeight*offsets[i][1]),
INT32(g_nWindowWidth*offsets][i][2]),
INT32(g_nWindowHeight*offsets[i][3]),
GL_COLOR_BUFFER_BIT, GL_LINEAR);

For each layer of the 2D array tawe, two thingsnust be donéo copy the image data to the
back buffer:

1. Configure this layer as color attachment zero of the read foarffer; this will be he source
of the blit operation

2. UseglBlitFramebufferto blit one pyramid image from the read fbuffer to the back
buffer at the location defined by the rectangleocdinates fronthearray

When the loop has finished and tleaderfunction returns, the final image is now fully
composited in the back buffdt.is nowready to swap the back buffer with the front buffer, so
that the scenis made visible on the screen.

3.3.3 Interleaved vertex buffer objects i Demo

Find this demo at the following directorxSDK _install_dirxDevelopmeniT utorial3OpenGLES
\19_InterleavedVBOOGES3Q

It demonstrates a technique for preparing and rendering a set of primitives. The attribute data for
the primitives is stored in an interleaved mannerveréex buffer objectTo render thepuse the
new draw calplDrawRangeElementsvhich was imoduced inrOpenGL ES 3.0

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 70

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

The application uses many of the same elements aldisclyssed ithe previous demos, sbis
demofocuses onnew and interestingspectsnstead

3.3.3.1 Construction of an interleaved vertex buffer object

NOTE:

The demo uses a single buftdject to store the following information:
A Screemspace vertex position
A RGBA color data for each vertex

Theindex data is not a part of this buffer. Indices are never taken from a vertex attribute array.
Instead, they are downloaded from a buffer object bou@l td&=L EMENT_ARRAY_BUFFER

Color and vertex data is stored in a linear fashion, one vertex afteegnotthe same order as it
is listed above.

In thedemonstration application, the data buffer is constructed in the function
InitVertexAttributesDataA closer look is as follows:

pVbuff = new VERTEX_ATTRIBUTES_DATA,;

The function sets up an instancelid VERTEX_ATTRIBUTES_DATA structure. This had
important properties of the vertex buffer object, as well as the deddiarghe draw calls.

pVbuff - >nTotalSizelnBytes = nVsize + nCsize; pVbuff - >pVertices
= (POS *)new CHAR[pVbuff - >nTotalSizelnBytes]; pVbuff -
>pPosOffset = NULL; pVbuff - >pColorOffset =

(UINT8*)((UINT8*)pVbuff - >pPosOffset + sizeof(POS));

pVbuff ->nStride = sizeof(POS) + sizeof(COLOR);

The properties are configured as follows:

A nTotalSizelnByte$ Total number of bytes theertex bdifer objectshould use
A pPosOffset Start offset for vertex position data

A pColorOffseti Start offset for vertex color data

A nStridel Number of bytes that separates vertex position and vertex colobetmiaen
consecutive verticesnithis example, thergie for both attribute data types is exactly the
same, which is why only one field is used to hold both valseaFigure3-7)

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 71

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

ﬁ stride for position data ﬂ
vertex 1 pos. data vertex 1 color data vertex 2 pos. data vertex 2 color data

L stride for color data J

Figure 3-7 Vertex buffer stride

In the loop which follows, the vertex buffer is then populated with position and color data.

Now, look at theRenderfunction. Herds how the properties stored in the
VERTEX_ATTRIBUTES_DATA are used to configure a vertex array object for use with the
vertex buffer object.

3.3.3.2 Using glDrawRangeElements

A new type of a draw call was introduceddpenGL ES3.0. The new function
glDrawRangeElementuilds upon the concept gfDrawElement@and introduces two new
parameters:

A Starti Minimum index value thas used for the purpose of the draw call
A Endi Maximum index value thas used br the purpose dhe draw call

If any of the index valués supplied either via th6&L_ELEMENT_ARRAY_BUFFERbinding
or via a clientside pointed is outside the defined range, theemistakehas been madend the
resulting behavior will be undefined.

The benefit of using thitype of draw call type ithatif the OpenGL ESmplementation knows

in advance what set of index values will be used for the drawing process, then there is an
opportunity to reduce the amount of vertex attribute array data that needs to be transferred in
order to execute the request.

Suppose thathemesh consists of a few layers, where each layer needs to be rendered with a
different shader or using a different set of textures. When rendering each layer, use
glDrawRangeElements tell theOpenGL ESmplementation what range of index valuls

draw call will be using. In many cases, this resimlimproved performance.

For thedemo application, the draw call is executed inrdraerfunction. This function sets up
the vertex attribute arrays, configartheGL_ARRAY_BUFFERand
GL_ELEMENT_ARRAY_BUFFERbindings, and then issues the draw call.

3.4 About the OpenGL ES implementation

This section gives details of the capabilities of the Adreno architecture witlpemGL ES 3.0
context.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 72

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

3.4.1 GL constant values

Table 3-2 GL_MAX constant values i OpenGL ES 3.0

Pname Value
GL_MAX_3D_TEXTURE_SIZE 2048
GL_MAX_ARRAY_TEXTURE_LAYERS 2048
GL_MAX_COLOR_ATTACHMENTS 8
GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS 197504
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 32
GL_MAX_COMBINED_UNIFORM_BLOCKS 24
GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS 197632
GL_MAX_CUBE_MAP_TEXTURE_SIZE 16384
GL_MAX_DRAW_BUFFERS 8
GL_MAX_ELEMENT_INDEX 2147483647
GL_MAX_ELEMENTS_INDICES 2147483647
GL_MAX_ELEMENTS_VERTICES 134217727
GL_MAX_FRAGMENT_INPUT_COMPONENTS 135
GL_MAX_FRAGMENT_UNIFORM_BLOCKS 12
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 896
GL_MAX_FRAGMENT_UNIFORM_VECTORS 224
GL_MAX_PROGRAM_TEXEL_OFFSET 7
GL_MAX_RENDERBUFFER_SIZE 16384
GL_MAX_SAMPLES 4
GL_MAX_SERVER_WAIT_TIMEOUT 1000000000
GL_MAX_TEXTURE_IMAGE_UNITS 16
GL_MAX_TEXTURE_LOD BIAS 31
GL_MAX_TEXTURE_SIZE 16384
GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS 128
GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS 4
GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS 4
GL_MAX_UNIFORM_BLOCK_SIZE 65536
GL_MAX_UNIFORM_BUFFER_BINDINGS 24
GL_MAX VARYING_COMPONENTS 128
GL_MAX VARYING_VECTORS 32
GL_MAX_VERTEX_ATTRIBS 32
GL_MAX_VERTEX_OUTPUT_COMPONENTS 133
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 16
GL_MAX_VERTEX_UNIFORM_BLOCKS 12
GL_MAX VERTEX_UNIFORM_COMPONENTS 1024
GL_MAX VERTEX_UNIFORM_VECTORS 256
GL_MAX_ VIEWPORT_DIMS 16384 x 16384

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

73

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.0 with Adreno

Table 3-3 Other GL constant values i OpenGL ES 3.0

Pname Value
GL_ALIASED_LINE_WIDTH_RANGE 1.0t0 8.0
GL_ALIASED_POINT_SIZE_RANGE 1.0t0 1023.0
GL_MIN_PROGRAM_TEXEL_OFFSET -8
GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT 4

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 74

4 Using OpenGL ES 3.1 with Adreno

4.1 New features in OpenGL ES 3.1

This section provides a short introduction to some of the more important features introduced in
OpenGL ES 3.1For further detailsseethe following:

A OpenGL ES 3.B5pecificationi http://www.khronos.org/registry/gles/specs/
3.1/es_spec_3.1.pdf

A OpenGL ES Shading Language 3Sfecificationi http://www.khronos.org/registry/gles/
specs/3.1/GLSL_ES Specification_3.10.pdf

A OpenGL ES 3.Reference Pagéshttp://www.khronos.orgpengles/sdk/docs/man31/

4.1.1 Atomic counters

OpenGL ES 3.provides a new class of unsigned integer variables called atomic counters. These
counters can be accessed by shaders using different atomic operations. The atomic nature of these
operations means thahen multiple shader invocations attempt to access a single atomic counter

at the same time, these accesses will be serialized so that no thread races occur.

To define an atomic counter in a shader, use theE®Bhading Languadgpeatomic_uint The
type is opaque, so the only way of accessing or manipulating the counter valukdsirader is
by using one of the new accessor functions, which include:

A atomicCountef Returns the counter value
A atomicCounterDecrementDecrements the counter value amtlirns the new value

A atomicCounterincremeiitincrements the counter value and returns the value prior to the
increment operation

Atomic countersnustbe backed by buffer object storage spatse the new indexed buffer

object binding pointGL_ATOMIC_COUNTER_BUFFER to associattheatomic counters with
regions of buffer objects. Multiple atomic counters are allowed to use a single buffer object, as
long as their storage space does not intersect.

To associate an atomic counter with a unique buffer olggabn, there are two new layout
gualifiersto use when declarg an atomic counter:

A Bindingi Specifiesthe index for the buffer object binding pqietg., it determines which
buffer object will be usedndmust always bepecified

A Offseti Specifiestheoffset in bytes of the atomic counter within the buffer object

For more details abouising these qualifiers, see tBpenGL ES 3.1 Shading language
Specificationat http://www.khronos.org/registry/gles/specs/3.1/
GLSL_ES_Specification_3.10.pdf

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 75

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/opengles/sdk/docs/man31/
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

NOTE:

For examplesupposehetask is to find out which of the values passed in the input dataset are
prime numbersSolve this problem by implementing a compute shader.

A single compute shader invocation would take the unique grotkp and worktem ID, convert

this information to an unique entry index, and use that index to address the input dataset to
retrieve the candidate number. Once the invocation knows which wgtuedess, it can move on

and perform necessary checks that would determine whether the value is a prime. If the input
value is indeed found to be a prime, then the compute shader invocation could store it in external
storage. But how do atomic countetdriithe picture here?

Use the counters as a means of obtaining index values that will be guaranteed to be unique across
all compute shader invocations that have been scheduled tdse@n OpenGL ES Shader
Languagenstruction that increments the atongsimunter, returning the value of the counter prior

to the increment. Should more than one shader invocation attempt to increment the counter at the
same time, it is guaranteed these requests will be serialized. Once the compute shader invocation
has obtaied an unique counter value, it can use it to store the prime number that it has found in a
shader storage buffer or an image, at an offset that will not be overwritten by any other compute
shader invocation. Finally, once all the compute shader invocditiists executing, the counter

value serves as a count of the number of primes found. The application can then download the
prime number values from the buffer object region or the texture mipmap that was used for result
storage, back into process space.

In coreOpenGL ES 3.1support for atomic counters is guaranteed only at the compute shader
stage. They may be supported at other shader stages as well, but this is not necessarily the case.

4.1.2 Compute shaders

OpenGL ES 3.Introduces a completely new typesbfaders known as compute shaders. These
do not form part of the normal rendering pipeline and can be used to execute data processing
tasks using the GPU.

The isolated nature of compute shaders has a number of consequences:
A They do not support inpattributes or output variables

A They are not invoked once per vertex as are vertex shaders

A No other shader stage precedes or follows their execution

However, they are like regular shaders in that they can access atomic counters, image variables,
shader storage Hars, textures, uniforms&nd uniform blocks.

For instancehow doesa compute shader communicate with the outside world? Aftgit all

cannot use input attributes or output variables. The answer is that it can use the object types
mentioned above. Of the, only atomic counters, image variabtesd shader storage buffers can
be written to by the shader as it ruMhen a compute shader wants to store the result of its work,
it can use one of the new atomic counter functions, update the contents ofjandmarite to a
buffer variable.

Because compute shaders operate outside the normal rendering pipeline, they are not invoked via
a draw call. Instead, the neylDispatchComputéunction is used to launch the operation.

Before the computation can stahtetwork to be donmustbe splitinto work units.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 76

Qual commE Adr eno Beveoper Gugle E S Using OpenGL ES 3.1 with Adreno

Each unit is processed by a work group. A single work group consists of a number of invocations,
which can potentially process that work unit in parallel. The number of invocations used is
defined by the sider. The invocations are arranged in a 1D, 2D or 3D grid, according to the
needs of the shader. The dimensions of the grid define the local work group size. There are
implementatiorspecific constraints on the maximum size of a local work group.

Those costraints are the reason wiwprk must wsually be split into multiple units.
glDispatchComputéakes a set of arguments defining work group counts in the X, Y and Z
dimensions. This allowtheinitiation of the processing of-8imensional array of work umitwith
a single API callRecall that each of those work units can be made up dafimé&nsional array of
shader invocations.

The invocations within a single work group can synchronize their execution using tfesnely
functiongroupMemoryBarrierThey @n communicate with each other using shared variables.
They can also exchange information using writable objects such as images, provided that they
synchronize access using with one of the BE\SLfunctions:barrier, memoryBarrier* or
groupMemoryBatrrier.

Important

Work groups can be executed in any order and are not guaranteed to be executed in parallel. This
means that any attempt to synchronize execution flow or resource access between different work
groupscanpotentially lead to deftocks.It is not possible to communicate or synchronize

execution flow between multiple work groups, only between different invocations within the

same work group.

Compute shaders allow for more flexibility in the way work is organized, thanks to shared
variables, which are available in compute shadersnot in other shader types. As a result, itis
becoming increasingly common for them to be used for Al, phyasigeostprocessing effects.

Tip
Do not interleave compute and graphics shaders. Undédtiemo architecture, switching

between the two pipeline types is expensive and should be avoided. Insteathdxdttaw calls
and dispatch call® reduce the number of times the drimeustswitch.

4.1.3 ES shading language enhancements

The following enhanceants have been introduced@penGL ES 3.1 Shading Language

A The binding layout qualifier can now be used to specify an initial binding point associated
with a uniform block or sampler uniform

A The function to split a floatingpoint number into significandnd exponentfiiexp)
A The function to build a floatingpoint number from significand and exponddekp)

A The functions to perform 3Bit unsigned integer add and subtract operations with carry or
borrow (UaddCarryusubBorrowy

A The functions to perforn32-bit signed and unsigned multiplication, with-B2 inputs and a
64-bit result spanning two 38it outputs imulExtendedumulExtendell

A The functions to perform bitield extraction, insertion and revershltfieldExtract
bitfieldInsert bitfieldRevese

A Multi-dimensional arrays can now be defined® SLcode

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION e

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

A The number of bits set to 1 in an integer value can now be determined with a single call
(bitCoun)

A The position of the most or least significant bit set to 1 can now be determined with a single
function call {indLSB, findMSB)

A Texture gather functionality is now available in #® Shading LanguadeextureGather
textureGatherOffsgtthese functions can be used to retrieve the 2x2 footprint that is used for
linear filtering in a texturédookup operation

A The functions to pack four-Bit integers to a 3Bit unsigned integer and to unpack alge
unsigned integer to four@it integers packUnorm4x8packSnorm4xgunpackUnorm4xg
unpackSnorm4x8

A The locations of uniforms in the default uniform block can now be preconfigured directly in
ES Shading Languad® using thdocationlayout qualifier

ES Shading Languadeatures covered in other sections of this chapter have been omitted from
the above list.

4.1.4 Images and memory barriers

Earlier in the chapteratomic counters/ere introduce@gndshowedhow they provide a means of
communication between a shadlesuch as a compute shadleand the outside world. However,
atomic counters are a limited tool. They ey represent unsigned integer values, and the set of
functions that operate on them is restrictethéfshader needs a more powerful means of data
exchange, one todbr use is imagesvhich isanother new feature introduced@penGL ES 3.1

An imageis an opaque uniform that points to a specific level of a texture. A number of different
texture types are supported by imades instance

A 2D textures (defined by tHeS Shader Languadgpesimage2D iimage2D anduimage2D

A 2D array textures (defined/the ES Shader Languaggpesimage2DArrayiimage2DArray
anduimage2DArray

A 3D Textures (defined by tHeS Shader Languaggpesimage3D iimage3D anduimage3D)

A Cubemap textures (defined by th8 Shader LanguaggpesimageCubgiimageCubeand
uimageCub@

Images are restricted to using a subset of the internal formats avail@genGL ES 3.1
A GL_R32I

A GL_R32F

A GL_R32uUl

A GL_RGBA16F
A GL_RGBA1S6I
A GL_RGBA16UI
A GL_RGBA32I
A GL_RGBA32F
A GL_RGBA32UI
A GL_RGBAS8

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 78

Qual commE

Adr en o Bevéloper GUBle E S Using OpenGL ES 3.1 with Adreno

NOTE:

A
A

A

GL_RGBASI
GL_RGBASUI
GL_RGBA8_SNORM

Once a mipmap level of a texture is assigned to an intagg) beread from and wrien to that
image directly from a shader. The cost associated with that operation is usually greater than that
of using atomic counters, so only use images when it isssacy to do so.

When performing load operations on an image, the texel locauistbe provided using integer
coordinates. No texture filtering capabilities are provided by images.

Any conformingOpenGL ES 3.1mplementation will support at lea&tur image uniforms at the
compute shader stagéimagesare usedt other shader stages, support is not guaranteed, so
always check first, using the appropricte_ MAX_* IMAGE_UNIFORMS constant.

When using images, pay attention to memory consistency isswere. dile a number of factors to
consideyincluding

A

A

Shader invocations are executed in a largely undefined order

The underlying memory that can be accessed through an image can also be changed by other
invocations orthe-fly

OpenGL ESnay cache store opéi@ns from one shader invocation, so other invocations
may not see the update

OpenGL ESs also allowed to cache values fetched by memory reads and to return the
cached value to any shader invocation accessing the same memory

It is possible taexert a degre of control over thes@penGL ESehaviors by using the following
memory qualifiers on an image declaration:

A

Coherenti Any write operations performed on this image must be reflected in the results of
reads subsequently performed by other shader inemsati

Volatilei Anyread operations performed on the image must reflect the results of updates to
the underlying memory, which may have been made by another shader invocation

Restricti A hint to the OpenGL ES implementation anisiassertdthat theunderlying
memory will be modified only from the current shader stage and through the image defined
using this keyword

Readonlyi Restricts the image to use for load operations

Writeonlyi Restricts the image to use for store operatiomsmory accesses r@ss multiple
shaders are largely unsynchronized:

A Relative order of reads and writes to a single shared memory address from multiple
separate shader invocations is largely undefined

Order of accesses to multiple memory addresses performed by a singleiishackgtion, as
observed by other shader invocations, is also undefined

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 79

Qual commE Adr eno Beveoper Gugle E S Using OpenGL ES 3.1 with Adreno

To synchronize memory transactions, shaders can use thmemaryBarriefunction. This
function waits for the completion of all pending memory accesses relating to the use of image
variables. The results of all store operations performezbbarentariables prior to the
memoryBarriercall will be visible to load operations subsequently executed in any shader
invocation at any shader stage.

These are thgynchronization constructer use in shader codé. memory barriemay need to

be injectecht the API level (segIMemoryBarrierat http://www.khronos.org/opengles/sdk/docs
/man31/html/gIMemoryBarrier.xhtnih the OpenGL ES 3.1 Reference Pagé&3onsider a shader

that accesses the same memory that is being used for shader image load/store opetagions but
other means, e.gexture fetch. ThenemoryBarriefunction in shader code is only guaranteed to
synchronize those memory accesses that are made using image variables and atomic counters.
Correct synchronization in such a case may require use of alevd@imemory barrier.

Images are useful for all techniques that need to update arbitrary locations of a textfieéyon
Example use cases include dynamic scene voxelization.

4.1.5 Indirect draw calls

In OpenGL ES 3.0when making a draw call, functigrarameters such #e following needed
to be passed

A Primitive mode

A Start index

A Number of indices to be rendered

A Other parameters, depending on the type of the draw call

In the context oDpenGL ES 3.0this was quite sufficient, given the lack of tools that could have
been used to generate contentlosfly directly on the GPU. However, with the advent of
compute shadershader storage buffer obje¢&SBO3, and atomic counters, the need arose for
adraw call that could source these parameter values from information stored in VRAM.

For instance, consider a case where a compute shader processes the contents of a rendered frame
and detects bright locations in that frame. These locations are thenistarednage or in an

SSBO. That information will later be used to blend the bright spots with small Bekeimed

guads. The compute shader needs to use an atomic counter to keep track of how many spots have
been detected. Remember that atomic counserduffer object storage. That means that the

number of bright spots is available in VRAM, ahdhouldbeable topass that value directly into

the draw ch. Without indirect draw cald introduced inOpenGL ES 3.4 that would not have

been possibldt would have needed to map the buffer object region into process space, to read

the counter value, and then to pass the value baokeéoGL ESas a draw call parameter.

OpenGL ES 3.5olves this problem with indirect draw calls:
A glDrawArraysindirect Same tinctionality agylDrawArraysinstanced
A glDrawElementsindiredt Same functionality aglDrawElementsinstanced

The indirect versions of these two draw calls read their input parameter values from a buffer
object bound to th&L_DRAW_INDIRECT_BUFFERbinding pint, instead of taking them as
formal parameters of the function call. The exception is thantideandtype arguments are still
passed as formal parameters.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 80

http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

A previoussection of this chapteliscussesomputeshaders The function used to launch
compue shaderg)IDispatchComputealso has an indirect version called
glDispatchComputelndirecin this case, the binding point used for the parameter values is
GL_DISPATCH_INDIRECT_BUFFERather tharGL_DRAW_INDIRECT_BUFFER

4.1.6 Multisample textures

NOTE:

NOTE:

Rendering to multisample attachments was introduc&@penGL ES 3.0The support came with
a few notable limitations:

A Useof renderbuffers for the process

A Renderbuffer requirement implied that multisampled dathéshadersould not be sampled
and thathecontenth ad t o b eby litting thé mukisampdedenderbuffer storage
into a singlesampled regular texture, whicbuld then be accesdusing theusual texture
sampling methods

A No feasible way ofgading individual sample values

A Not possilee to specify at the API level which samples should be modifieahgltine
execution of a draw call

These are some of the issues that multisample textures, introdu@pdnGL ES 3.1aim to
address.

Multisample textures can be created using the gl#@xStorage2DMultisamplentry point with
theGL_TEXTURE_2D_ MULTISAMPLEtexture target. Mutable multisample textures are not
supported.

Multisample textures do not have mipmaps. Also, since the actual physical layout of the
underlying data is hardware depenii¢ime only wayto write data to multisample textures is by
rendering to them. Likewise, the only permissible way of reading the contents is by sampling the
texture. Sampling can only be done using nearest filterinige textureis configuredor linear

or trilinear filtering it will be considered incomplete.

To render to a multisample texture, attach it to one of the frauffer object attachment points.
Do this using thglFramebufferTexture2@unction.

Framebuffer completeness rules require alaatiments to be multisample if any one of them is.

To sample from a multisample texture, use a new sampler type sattgiler2DMSA
multisample texture sampler can use only one texture sampling furtetieif;etch In addition

to the usual parametersatampling functionexelFetchitakes an additional integer parameter
specifying thesampleindexfor sampling

ThetexelFetcHunction takes integer texture coordinates. This makes it clear that bilinear
interpolation is not supported.

The new API functia glSampleMaskprovides the ability to mask the set of samples to be
updated on subsequent draw calls. This will work for franoféer attachments of both types: the
new multisample textures and the renderbuffers used for multisampl®wgeinGL ES 3.0

The most significant usease for multisample textures is in deferred renderers. These are now
able to use more complex aatiasing mechanisms, because they now have a chance to access
individual samples when samplinglsiffer contents.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 81

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

Tip

Multisample textures are expensive, as the Adreno driver needs to load smstmiger of
samples> * <number of bytes per surfatetes when switching render targets. Consider blitting
themulti-sample textures to singgample containers as soon asrthéti-sample data is no

longer needed. Then use the sirgpenpled representation instead of the neatnple one,
saving on both bandwidth and memory usage.

4.1.7 Separate shader objects

One of the key object types @penGL ESs program objects. They are neddo carry out any
kind of draw call. As applications become more complex, it is not unusual for a ntpkendsL
ESapplications to create hundreds of program objects.

Use of a large number of program objects carries some costs:

A Longer loading times, aseh program object needs to be linked (or loaded as a blob from
external storage) before it che used for drawing operations

A Increased memory usage

Separate shader objects address these issues. There is now no need for the expensive process of
constructng a program object and linking a number of shader objects. Instead, each shader object
can be made into a shader program. Shader programs (one per shader stage) can then be plugged
into a new object called pipeline object. Once a pipeline object is liouhd rendering context,

it is used for all draw calls, provided no other program object has been made active.

Before a shader program can be used in a pipeline object, it needs to be linked. This process is
similar to linking a program object, but is lited to that specific shader stage. Once a shader
program is linked, the binary representatbam also be saved reuse it next time the application

is launched.

Using shader programiheapplication can now build pipeline objectsthe-fly. This is mich
more efficient than the old method using program objects for the following reasons:

A Pipeline objects do not need to be linkpllig the shader programs into a pipeline object and
then start issuing draw calls.

A Itis common for an application to use mammggram objects that all have the same vertex
shader in common and are differentiated by the fragment shader. With separate shader
objects, the shader program for the vertex shader needs to be built only once. The same
shader program can then be reused fiipeline object as many times as needed. This saves
time the linker would otherwise have to spend analyzing the same vertex iepaddedly

Shader programs hold uniform state informatiomisihgthe separate shader objects approach,
configure unifem values separately for each shader program. This is not the case when using
program objects. The uniform state is stored in a persistent fashitereas navorry about

that information getting los¥henswitching to a different pipeline objecthough, if reusng the

same vertex shader program between multiple pipeline objects, remember to update all uniforms
that need to take different values for different pipeline configurations.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 82

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

4.1.8 Shader storage buffer objects

In a previous chapter Uniform Buffergere discussed’ hese were one of the more important
features introduced i@penGL ES 3.0However they still have two unfortunate constraints:

A The maximum size, inworstcase scenario, can be as low as 16 KB. If muitiglthe
number by the worstasemaximum number of uniform blocks available for use in a single
shader stage (which is 12), this gives a total of 192KB. This is usually enough, but it does
require that the data can be split up, which is not always practicable.

A Uniform buffers are readnly.

SSBOs, introduced i@penGL ES 3.laddress both problems. They are guaranteed to support
data blocks of size up to 227 bytes (134,217,728 bytes), and they can be used for both read and
write operations. The actual maximum data block size depends QpémsL ES

implementation and may exceed the above value. This can be checked bygt@Hhitigteger64v

with thepnameparameter set t6L_ MAX _SHADER_STORAGE_BLOCK_SIZE

All OpenGL ES 3.Implementations must support SSBOs at the compute shader stage. Support
at other shader stages is optional.

The SSBO equivalent of a uniform block is called a shader storage block, with the following key
differences:

A In OpenGL ES Shading Languagede, tle uniform keyword is replaced biyuffer.

A The last member of a shader storage block is allowed to be an unsized array. The size of the
array is calculated at run time, in such a way that it makes full use of the actual size of the
data store backing the shex storage block.

A On Adrenebased platforms, it is significantly faster to access a uniform block than a shader
storage block.

Shader invocations may modify the contents of a shader storage block at afBatiragention

to the synchronization of memoagcessessectiond.1.4discusses range of memory qualifier
keywords. These keywords can provide valuable hinBpenGL ESmplementation as thow

the variables are going to be used. The same keywords may be used in the declaration of a shader
storage block variable. One use case where this will be absolutely necessary is where the data is
going to bereused between different shader stages drddor a single draw call. Under some
circumstanceghe use ofnemory barrierss neededo ensure no thread races ocdurese

barriers can operate either@penGL ES Shader Languagede or at the level of tHepenGL

ES API Further detailsanbe found here:

A OpenGL ES 3.Bpecificationi http://www.khronos.org/registry/gles/specs/3.1/
es_spec_3.1.pdf

A OpenGL ES 3.1 Reference PagmsglMemoryBarrieri http://www.khronos.org/
opengles/sdk/docs/man31/html/gIMemoryBarrier.xhamdlmemoryBarriefi
http://www.khronos.org/opengles/sdk/docs/man31/html/memoryBarrier.xhtml

A OpenGL ES 3.1 Shader Language Specificaisee Section 4.9emory Acces®ualifierg
T http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf

In some case& may be possible to avoid the need for using the synchronization techniques
described above. As an alternative, use an atomic funétiomic fundions area set of

functions, introduced in th®@penGL ES 3.1 Shading Languagdich apply a number of
different atomic operations to buffer or shared variables of signed or unsigned integer types.

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 83

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/glMemoryBarrier.xhtml
http://www.khronos.org/opengles/sdk/docs/man31/html/memoryBarrier.xhtml
http://www.khronos.org/registry/gles/specs/3.1/GLSL_ES_Specification_3.10.pdf

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

The following functions are provided:
A atomicAddi Adds two values together
A atomicAndi Performs a biwise AND operation on two values

A atomicCompSwajp Assigns a value to a variable, if the existing value of the variable
contents differs from the value providedthg caller in another argument

A atomicExchangé Sets a variable to a new valaad returns the original value
A atomicMaxi Returns the maximum of two values

A atomicMini Returnsthe minimum of two values

A atomicOri Performsa bitwise OR operation on two values

A atomicXori Performsa bitwise XORoperation on two values

Here are a few example use casesfader storage buffer objects:

A Are the main way for compute shaders to excba data with the outside world

A Can be used by shaders to access large datasets which would have been too big #o fit in
texture e.g., the vertex pulling technique

4.2 Walkthrough of sample applications

This section discusséisree sample applications. Each of the samples showcases one of the new
OpenGL ES 3.features covered in the previous section of this chapter.

4.2.1 Separate shader objects i Demo

Figure 4-1 Separate shader objects demo

This application demonstrates how to use separate shader objects. It uses a single vertex shader
and one of three different fragment shaders to build a pipeline object. Every five seconds, the
application switches the fragment shader used by the pipddjeet@®bserve that the change of
shader is virtually instantaneous and does not introduce any lag into the rendering process.

The shaders used are reasonably straightforward.

80-NU141-1B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 84

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

The vertex shader:

#version 310 es

out gl_PerVertex {

vec4 gl_Position; };
layout(location = 0) out vec2 uv;
void main() { switch
(gl_VertexID) {

case 0:
gl_Position = vec4(-1.0, -1.0,0.0,1.0);
uv =vec2(0.0, 1.0);
break;
case 1:
gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);
uv =vec2(0.0, 0.0);
break;
case 2:
gl_Position = vec4(1.0, - 1.0, 0.0, 1.0);
uv =vec2(1.0, 1.0);
break;
case 3:
gl_Position = vec4(1.0, 1.0, 0.0, 1.0);
uv =vec2(1.0, 0.0);
bre ak;
}
2

This vertex shader outputs a fatireen quad built out of a triangle strip. It does not take any
input data but configures two output variables:

A The vertex position is set to one of four predefined locations, depending on the gl_VertexID
value for the running shader invocation. The vertex positions are defined so that a triangle
strip using the four vertices will form a fedcreen quad.

The UV coordinates are also passed down the rendering pipeline. This vector is used to
construct the gradie in the fragment shader stage.

p

The fragment shaders generate gradients, using the information prepared in the vertex shader
stage. The first fragment shader generates a horizontal gradient, the second one creates a vertical
gradient, and the third orshiows the result of summing both gradients.

The first of the fragment shaders:

#version 310 es

layout(location = 0) in vec2 uv;
out vec4 result;

void main() { result = vec4(uv.x,
0.0, 1.0,1.0); };

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 85

Qual commE Adr elLrES Bevaoper Gu@le Using OpenGL ES 3.1 with Adreno

Now look at how the demo:

A Initializesthe shadeprograns
A Sets up the pipeline object
A Renders each frame

4.2.1.1 Setting up the shader programs

NOTE:

The function create_separate_shader_progmuosed to set up a shader program. This function
is called four times in all, to set up three fragment shader programsianeiex shader
program. This happens when rendering the first frame.

There are two different methods to set up a shader program in OpenGL ES:

A A shader program can provide implementations of multiple shader stagéstivgre might
seem to be little advaiage in doing this where only fragment and vertex shaders are
involved, it makes more sense when geometry, tessellation gamdolessellation
evaluation shader stages come into the equation.

The first step is to set up a shader object for each shtatgr to be included in the shader
program. Once all of the shaders have been successfully compiled, create the shader program.

Setting up a shader program works just like setting up a regular program object, except for
one thing: before linkg it, set is GL_PROGRAM_SEPARABLBproperty toGL_TRUE

This is done using a new API function callg®rogramParameterThen attach the shader
objects and link the program object usgiginkProgram If the above steps completed

without error, thertheshader progm is ready for use.

A If the shader program is to provide the implementation of a single shader stage only, take a
shortcut and use a single callgi€reateShaderProgramvhis carries out all of the steps
described for the first method, and returns thefilthe shader program.

Before attemphg to use the object, verify that the shaders compiled successfully and that the
shader program was correctly linked. Sitloere is naccess to shader objects for the
compilation, check for successful compilationveyifying theGL_LINK_STATUS property

of the returned program object.

The shader info log for any shader failing to compile will be appended to the program info log.
This information may be helpful for diagnosing the error. It can be retrieved usindPthrentky
pointglGetPrograminfoLog

An example from theemo application:

bool result =true;

GLuint result_id = 0;

result_id = glCreateShaderProgramv(shader_type,

1,

&shader_body); if (result_id I=0) { GLint

link_status = GL_FALSE;
glGetProgramiv(result_id,

GL_LINK_STATUS,

&link_status);

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 86

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

if (link_status = GL_TRUE)
{ result =

false; }}else{

result = false; }

if (Iresult && result_id = 0)

{

glDeleteProgram(result_id);
result_id = 0;

}

return result id;

Theexample applicationsesthe shortcut approach. The implementation calls
glCreateShaderPrograrmand then checks if a valid program object ID was returned. This ID is
then used to check the link status to determine if the shader progréedmisitialized
successfully.

If an error ariesat any stage after the program object has been created, release it by calling
glDeleteProgram

4.2.1.2 Setting up the pipeline object

NOTE:

After setting up the shader programs, initialize the pipeline object. Thetésts to generate a
pipeline object ID using a call giGenProgramPipelineéssociate the ID with a pipeline object
instance usingIBindProgramPipeline.

Here is the code fromte demo application:

glGenProgramPipelines(1, & pipeline_object_id);
glBin dProgramPipeline(_pipeline_object _id);

The new pipeline object is now bound to the rendering cariiakit does not yet define any
shader stages. tifying to issue a draw call while an uninitialized pipeline object is bound, the
results are undefined.

The pipeline object will only be used by OpenGL ES if there is no other program object activated
for this rendering context.

In the examplapplication, the same vertex shader progimaiways usedoutit will be
switching between different fragment skagrograms every five seconds. It therefore makes
sense to set up the vertex shader stage during initialization, as follows:

glUseProgramStages(_pipeline_object_id,
GL_VERTEX_SHADER_BIT,
_vs_id);

The shader program ftinevertex shadr stage has IDvs_id The above call attaches this shader
program tahepipeline object.

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 87

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

4.2.1.3 Using the pipeline object

At this stagethe pipeline object is set up and is bound to the rendering context. However, it
defines a vertex shader stage only.fid@ment shader stage is present. This means that any
attempt to use the pipeline object for a draw call will result in undefined behavior.

The configuration of the fragment shader stage is done in a code block that will be executed
under two conditions:

A If rendering the very first frame
A If at least five seconds have passed since the last time this code block was entered

The code in this block determines which fragment shader stage should be used, based on elapsed
time since the application started runnifibe IDs of the shader programs are held in the array

fs_ids and the variabla_fs_id_to_usés the array index of the shader program ihéieing

useal.

Configure the fragment shader stageéhapipeline object using the following call:
glUseProgramSta ges(_pipeline_object_id,

GL_FRAGMENT_SHADER_BIT,
fs_ids[n_fs_id_to_use]);

Now that the pipeline object has both shader stages configured, safely issue a draw call that
covers whole screen space with a quad built of two triangles:

glDra wArrays(GL_TRIANGLE_STRIP,

0, /*first*/
4); I* count */

4.2.2 Multisample textures i Demo

Figure 4-2 Multisample textures demo

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 88

Qual commE /OpanGLES Beveloper Guide Using OpenGL ES 3.1 with Adreno

The demo shows a rotating wireframe cube which is first renderechtdtisample texture, and

then blitted into the back buffer. A number of different multisample textures are created, each
holding a different number of samples per texel. The user can switch between these textures in
order to see the difference in termsvidual quality.

As with the previous example, the shadegmgusedin this demo are simple:

A The vertex shader takes a medEw-projection matrix as input and uses it to compute the
clip space coordinasefor the input vertex position

A The fragment shamt sets the one and only output vilgato a fully opaque red color

Since this dema workingwith a real mesh, much of the code is dedicated to the vertex buffer
object setup process. Howevigrfocusessolely on aspects related specifically to mutipée
textures:

A How are the multisample textures set up?
A How is geometry rendered into a multisample texture?

A How is multisample texture data copied to the back buffer?

4.2.2.1 Setting up the multisample textures

This demo takes the same approach to resourcdimngtian as did the previous demo. The
multisample textures are generated and assigned storage in the function responsible for rendering
a single frame. This only happens when the function is called for the first time.

The following code block is responitfor setting up the textures:

for (n_texture = 0; n_texture <
n_multisample_textures ++n_texture)
{ uint32 _tn_texture_samples =
n_max_color_texture_samples *
n_textu re /
(n_multisample_textures - 1),

if (n_texture _samples==0) { I*
Requesting zero samp les is not permitted */
n_texture_samples=1; }

_textures[n_texture].n_s amples = n_texture_samples;

glGenTextures(1,
& _te xtures[n_texture].texture);
glBindTexture(GL_TEXTURE_2D _MULTISAMPLE,
_textures[n_texture].texture);

glT exStorage2DMultisample(
GL_TEXTURE_2D_MULTISAMPLE,

n_texture_sam ples, GL_RGBAS,

re ndertarget_width,

rendertarge t_height, GL_FALSE); /*
fixedsamplelocations */

}

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 89

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

Thedemo uses a number of multisami@gtures, each holding a different number of samples.
The total number of multisample texturesdisedefined byn_multisample_textures

For each multisample texture, start by working out the number of samples it will use,
n_texture_sample®o this in seh a way that the first multisample texture will use a single
sample, and the last one will use the maximum number permitted by the implementation
(GL_MAX_COLOR_TEXTURE_SAMPLE®, with a reasonably regular progression in
between.

Then set up each multisatagexture using the following steps:
1. Generate a new texture object ID usgiGenTextures

2. UseglBindTextureto bind this ID to the&sL_ TEXTURE_2D_ MULTISAMPLEtexture
target

3. Allocate storage fothe multisample texture usingi TexStorage2DMultisample

4.2.2.2 Using the multisample texture as a render target

The demo renders the wireframe cube to a multisample texture attached as a color attachment of a
framebuffer object created at initialization time. The multisample texture rendered to is switched
every five secoas, using the pool of multisample textures covered earlier.

Use the API functioglFramebufferTexture2fb attach the new multisample texture, as follows:

glFramebufferTexture2D(

GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENTO,
GL_TEXTURE_2D_MULTISAMPLE,
_textures[n_texture_to_use].texture,
0); /* level */

Since multisample textures do not support mipmalpgays use the basevel mipmap.

4.2.2.3 Transferring multisample texture data to the back buffer

To transfer the contes of the multisample texture to the back buffer of the default flardfier,
perform a framéuffer blit operation.This operation was introduced in OpenGL ES 3.0 and
carries out a fast copy from the attachments of the read fraffer to the corresponalj

attachments of the draw frarhaffer. These copies bypass the fragment pipeline except that they
are still subject to processing by the pixel ownership test, the scissor test and sRGB conversion.

One of the things blits allosvisto flatten the contentsf a multisample attachment (such as a
renderbuffer or a multisample texture) to a sirgdenple representatiofihe demoéveragsthis
functionality to merge the multisample representatiotheivireframe cube into a
singlesampled version, deliveredrekctly to the back buffer. The following code snippet
performs this task:

glBindFramebuffer(GL_DRAW _FRAMEBUFFER,
0);
gIBlitFramebuffer(0 , I* sreX0 */

80-NU141-1 B MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 90

Qual commE Adr eno Beveoper Gugle ES Using OpenGL ES 3.1 with Adreno

NOTE:

0, /* srcY0 */

render target width,

rendert arget_height,

0,/*d stX0* o, /*
dstY0 */

ren dertarget_width,

rendert arget_height,
GL_COL®_BUFFER_BIT,
GL_NEAREST); /* filter */

If wondering if it might be simpler just to render a textured quad directly to the back buffer,
sampling the multisample texture in a fragment shader and storing the sampled value in an output
variable. The problem is that there is only one texture samipiimggion inOpenGL ES Shader
Languagehat allowsthe samping of multisample textures, and this function only samples from a
single sample at a timepecified by one of the input parameters to the function. Of caurse,

shader could sample all the avhilnsamples one after another and then calculate a weighted
average. However, that would be much slower than the blit operation used in the demo.

Tip
gIBlitFramebuffer can also be used to perform stretch Bldsfurther details seethe OpenGL

ES 3.1Reference Pader the functionat http://www.khronos.org/opengles/sdk/docs/man3/
html/gIBlitFramebuffer.xhtml

At this point, the singksampled representation thie wireframe cube has made it into the back
buffer. The only thing left to do is to swap the back buffer and front buffer, and the cube will then
be made visible.

4.2.3 Compute shaders and shader image load/store i Demo

Figure 4-3 Compute shaders and shader image load/store demo

80-NU141-1 B

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 91

http://www.khronos.org/opengles/sdk/docs/man3/html/glBlitFramebuffer.xhtml
http://www.khronos.org/opengles/sdk/docs/man3/html/glBlitFramebuffer.xhtml

